Skip to main content

Advertisement

Log in

Scopolamine disrupts place navigation in rats and humans: a translational validation of the Hidden Goal Task in the Morris water maze and a real maze for humans

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Development of new drugs for treatment of Alzheimer’s disease (AD) requires valid paradigms for testing their efficacy and sensitive tests validated in translational research.

Objectives

We present validation of a place-navigation task, a Hidden Goal Task (HGT) based on the Morris water maze (MWM), in comparable animal and human protocols.

Methods

We used scopolamine to model cognitive dysfunction similar to that seen in AD and donepezil, a symptomatic medication for AD, to assess its potential reversible effect on this scopolamine-induced cognitive dysfunction. We tested the effects of scopolamine and the combination of scopolamine and donepezil on place navigation and compared their effects in human and rat versions of the HGT. Place navigation testing consisted of 4 sessions of HGT performed at baseline, 2, 4, and 8 h after dosing in humans or 1, 2.5, and 5 h in rats.

Results

Scopolamine worsened performance in both animals and humans. In the animal experiment, co-administration of donepezil alleviated the negative effect of scopolamine. In the human experiment, subjects co-administered with scopolamine and donepezil performed similarly to subjects on placebo and scopolamine, indicating a partial ameliorative effect of donepezil.

Conclusions

In the task based on the MWM, scopolamine impaired place navigation, while co-administration of donepezil alleviated this effect in comparable animal and human protocols. Using scopolamine and donepezil to challenge place navigation testing can be studied concurrently in animals and humans and may be a valid and reliable model for translational research, as well as for preclinical and clinical phases of drug trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

MWM:

Morris water maze

HGT:

Hidden Goal Task

GLM:

General linear model

RM:

Repeated measures

References

  • Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging and Alzheimer’s association workgroup. Alzheimers Dement 7:270–279. doi:10.1016/j.jalz.2011.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  • Antonova E, Parslow D, Brammer M et al (2011) Scopolamine disrupts hippocampal activity during allocentric spatial memory in humans: an fMRI study using a virtual reality analogue of the Morris water maze. J Psychopharmacol 25:1256–1265. doi:10.1177/0269881110379285

    Article  CAS  PubMed  Google Scholar 

  • Bartolini L, Risaliti R, Pepeu G (1992) Effect of scopolamine and nootropic drugs on rewarded alternation in a T-maze. Pharmacol Biochem Behav 43:1161–1164

    Article  CAS  PubMed  Google Scholar 

  • Baxter MG, Gallagher M (1996) Intact spatial learning in both young and aged rats following selective removal of hippocampal cholinergic input. Behav Neurosci 110:460–467

    Article  CAS  PubMed  Google Scholar 

  • Bianchetti A, Ranieri P, Margiotta A, Trabucchi M (2006) Pharmacological treatment of Alzheimer’s disease. Aging Clin Exp Res 18:158–162

    Article  CAS  PubMed  Google Scholar 

  • Buccafusco JJ, Terry AV, Webster SJ et al (2008) The scopolamine-reversal paradigm in rats and monkeys: the importance of computer-assisted operant-conditioning memory tasks for screening drug candidates. Psychopharmacology 199:481–494. doi:10.1007/s00213-007-0887-8

    Article  CAS  PubMed  Google Scholar 

  • Cassel JC, Kelche C (1989) Scopolamine treatment and fimbria-fornix lesions: mimetic effects on radial maze performance. Physiol Behav 46:347–353

    Article  CAS  PubMed  Google Scholar 

  • Czéh B, Stuchlik A, Wesierska M et al (2001) Effect of neonatal dentate gyrus lesion on allothetic and idiothetic navigation in rats. Neurobiol Learn Mem 75:190–213. doi:10.1006/nlme.2000.3975

    Article  PubMed  Google Scholar 

  • D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36:60–90

    Article  PubMed  Google Scholar 

  • Ellis JR, Ellis KA, Bartholomeusz CF et al (2006) Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. Int J Neuropsychopharmacol 9:175–189. doi:10.1017/S1461145705005407

    Article  CAS  PubMed  Google Scholar 

  • Entlerova M, Lobellova V, Hatalova H et al (2013) Comparison of long-Evans and Wistar rats in sensitivity to central cholinergic blockade with scopolamine in two spatial tasks: an active place avoidance and the Morris water maze. Physiol Behav 120:11–18. doi:10.1016/j.physbeh.2013.06.024

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson A, Snyder PJ, Cromer J et al (2008) The use of effect sizes to characterize the nature of cognitive change in psychopharmacological studies: an example with scopolamine. Hum Psychopharmacol 23:425–436. doi:10.1002/hup.942

    Article  CAS  PubMed  Google Scholar 

  • Frey KA, Koeppe RA, Mulholland GK et al (1992) In vivo muscarinic cholinergic receptor imaging in human brain with [11C]scopolamine and positron emission tomography. J Cereb Blood Flow Metab 12:147–154. doi:10.1038/jcbfm.1992.18

    Article  CAS  PubMed  Google Scholar 

  • Golding JF, Gosden E, Gerrell J (1991) Scopolamine blood levels following buccal versus ingested tablets. Aviat Space Environ Med 62:521–526

    CAS  PubMed  Google Scholar 

  • Greenberg SM, Tennis MK, Brown LB et al (2000) Donepezil therapy in clinical practice: a randomized crossover study. Arch Neurol 57:94–99

    Article  CAS  PubMed  Google Scholar 

  • Guo HB, Cheng YF, Wu JG et al (2015) Donepezil improves learning and memory deficits in APP/PS1 mice by inhibition of microglial activation. Neuroscience 290:530–542. doi:10.1016/j.neuroscience.2015.01.058

    Article  CAS  PubMed  Google Scholar 

  • Gupta R (2012) Veterinary toxicology: basic and clinical principles, chapter 85. Academic Press, United States

    Google Scholar 

  • Herrera-Morales W, Mar I, Serrano B, Bermúdez-Rattoni F (2007) Activation of hippocampal postsynaptic muscarinic receptors is involved in long-term spatial memory formation. Eur J Neurosci 25:1581–1588. doi:10.1111/j.1460-9568.2007.05391.x

    Article  PubMed  Google Scholar 

  • Hort J, Andel R, Mokrisova I et al (2014) Effect of donepezil in Alzheimer disease can be measured by a computerized human analog of the Morris water maze. Neurodegener Dis 13:192–196. doi:10.1159/000355517

    Article  CAS  PubMed  Google Scholar 

  • Hort J, Laczó J, Vyhnálek M et al (2007) Spatial navigation deficit in amnestic mild cognitive impairment. Proc Natl Acad Sci U S A 104:4042–4047. doi:10.1073/pnas.0611314104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Xu A-J, Li R, Wei E-Q (2002) Reversal of scopolamine-induced spatial memory deficits in rats by TAK-147. Acta Pharmacol Sin 23:355–360

    CAS  PubMed  Google Scholar 

  • Christoffersen GR, von Linstow Roloff E, Nielsen KS (1998) Effects of piracetam on the performance of rats in a delayed match-to-position task. Prog Neuro-Psychopharmacol Biol Psychiatry 22:211–228

  • Iaria G, Petrides M, Dagher A et al (2003) Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J Neurosci 23:5945–5952

    CAS  PubMed  Google Scholar 

  • Jezek K, Henriksen EJ, Treves A et al (2011) Theta-paced flickering between place-cell maps in the hippocampus. Nature 478:246–249. doi:10.1038/nature10439

    Article  CAS  PubMed  Google Scholar 

  • Kalová E, Vlcek K, Jarolímová E, Bures J (2005) Allothetic orientation and sequential ordering of places is impaired in early stages of Alzheimer’s disease: corresponding results in real space tests and computer tests. Behav Brain Res 159:175–186. doi:10.1016/j.bbr.2004.10.016

    Article  PubMed  Google Scholar 

  • Kesner RP, Hopkins RO (2006) Mnemonic functions of the hippocampus: a comparison between animals and humans. Biol Psychol 73:3–18. doi:10.1016/j.biopsycho.2006.01.004

    Article  PubMed  Google Scholar 

  • Koller G, Satzger W, Adam M et al (2003) Effects of scopolamine on matching to sample paradigm and related tests in human subjects. Neuropsychobiology 48:87–94

    Article  CAS  PubMed  Google Scholar 

  • Laczó J, Andel R, Vyhnalek M et al (2012) From Morris water maze to computer tests in the prediction of Alzheimer’s disease. Neurodegener Dis 10:153–157. doi:10.1159/000333121

    Article  PubMed  Google Scholar 

  • Laczó J, Andel R, Vyhnalek M et al (2014) APOE and spatial navigation in amnestic MCI: results from a computer-based test. Neuropsychology 28:676–684. doi:10.1037/neu0000072

    Article  PubMed  Google Scholar 

  • Lim YY, Maruff P, Schindler R et al (2015) Disruption of cholinergic neurotransmission exacerbates Aβ-related cognitive impairment in preclinical Alzheimer’s disease. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2015.07.009

    Google Scholar 

  • Lindner MD, Hogan JB, Hodges DB et al (2006) Donepezil primarily attenuates scopolamine-induced deficits in psychomotor function, with moderate effects on simple conditioning and attention, and small effects on working memory and spatial mapping. Psychopharmacology 188:629–640. doi:10.1007/s00213-006-0556-3

    Article  CAS  PubMed  Google Scholar 

  • Marisco PC, Carvalho FB, Rosa MM et al (2013) Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5′-nucleotidase and adenosine deaminase activities. Neurochem Res 38:1704–1714. doi:10.1007/s11064-013-1072-6

    Article  CAS  PubMed  Google Scholar 

  • Mitsushima D, Sano A, Takahashi T (2013) A cholinergic trigger drives learning-induced plasticity at hippocampal synapses. Nat Commun. doi:10.1038/ncomms3760

    PubMed  PubMed Central  Google Scholar 

  • Molchan SE, Mellow AM, Hill JL et al (1992) The effects of thyrotropin-releasing hormone and scopolamine in Alzheimer’s disease and normal volunteers. J Psychopharmacol 6:489–500. doi:10.1177/026988119200600404

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  • Morris RG (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Article  Google Scholar 

  • Nedelska Z, Andel R, Laczó J et al (2012) Spatial navigation impairment is proportional to right hippocampal volume. Proc Natl Acad Sci U S A 109:2590–2594. doi:10.1073/pnas.1121588109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura H, Kosasa T, Kuriya Y, Yamanishi Y (2000) Donepezil, a centrally acting acetylcholinesterase inhibitor, alleviates learning deficits in hypocholinergic models in rats. Methods Find Exp Clin Pharmacol 22:89–95

    Article  CAS  PubMed  Google Scholar 

  • Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661. doi:10.1096/fj.07-9574LSF

    Article  CAS  PubMed  Google Scholar 

  • Rentz DM, Parra Rodriguez MA, Amariglio R et al (2013) Promising developments in neuropsychological approaches for the detection of preclinical Alzheimer’s disease: a selective review. Alzheimers Res Ther 5:58. doi:10.1186/alzrt222

    Article  PubMed  PubMed Central  Google Scholar 

  • Robbins TW, Semple J, Kumar R et al (1997) Effects of scopolamine on delayed-matching-to-sample and paired associates tests of visual memory and learning in human subjects: comparison with diazepam and implications for dementia. Psychopharmacology 134:95–106

    Article  CAS  PubMed  Google Scholar 

  • Scali C, Casamenti F, Bellucci A et al (2002) Effect of subchronic administration of metrifonate, rivastigmine and donepezil on brain acetylcholine in aged F344 rats. J Neural Transm 109:1067–1080. doi:10.1007/s007020200090

    Article  CAS  PubMed  Google Scholar 

  • Sherman SJ, Atri A, Hasselmo ME et al (2003) Scopolamine impairs human recognition memory: data and modeling. Behav Neurosci 117:526–539

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Seol I, Son C (2010) Interpretation of animal dose and human equivalent dose for drug development. J Korean Orient Med 31:351–357

    Google Scholar 

  • Snyder PJ, Bednar MM, Cromer JR, Maruff P (2005) Reversal of scopolamine-induced deficits with a single dose of donepezil, an acetylcholinesterase inhibitor. Alzheimers Dement 1:126–135. doi:10.1016/j.jalz.2005.09.004

    Article  CAS  PubMed  Google Scholar 

  • Snyder PJ, Lim YY, Schindler R et al (2014) Microdosing of scopolamine as a “cognitive stress test”: rationale and test of a very low dose in an at-risk cohort of older adults. Alzheimers Dement 10:262–267. doi:10.1016/j.jalz.2014.01.009

    Article  PubMed  Google Scholar 

  • Stuchlik A (2014) Dynamic learning and memory, synaptic plasticity and neurogenesis: an update. Front Behav Neurosci 8:106. doi:10.3389/fnbeh.2014.00106

    PubMed  PubMed Central  Google Scholar 

  • Stuchlik A, Rehakova L, Telensky P, Vales K (2007) Morris water maze learning in long-Evans rats is differentially affected by blockade of D1-like and D2-like dopamine receptors. Neurosci Lett 422:169–174. doi:10.1016/j.neulet.2007.06.012

    Article  CAS  PubMed  Google Scholar 

  • Svoboda J, Telensky P, Blahna K et al (2015) The role of rat posterior parietal cortex in coordinating spatial representations during place avoidance in dissociated reference frames on a continuously rotating arena (carousel). Behav Brain Res 292:1–9. doi:10.1016/j.bbr.2015.05.008

    Article  PubMed  Google Scholar 

  • Tabachnick B, Fidell L (2007) Using multivariate statistics, 6th edn. Pearson/Allyn & Bacon, Boston

    Google Scholar 

  • Takahata K, Minami A, Kusumoto H et al (2005) Effects of selegiline alone or with donepezil on memory impairment in rats. Eur J Pharmacol 518:140–144. doi:10.1016/j.ejphar.2005.06.024

    Article  CAS  PubMed  Google Scholar 

  • Thomas E, Snyder PJ, Pietrzak RH et al (2008) Specific impairments in visuospatial working and short-term memory following low-dose scopolamine challenge in healthy older adults. Neuropsychologia 46:2476–2484. doi:10.1016/j.neuropsychologia.2008.04.010

    Article  PubMed  Google Scholar 

  • Tippett WJ, Lee J-H, Mraz R et al (2009) Convergent validity and sex differences in healthy elderly adults for performance on 3D virtual reality navigation learning and 2D hidden maze tasks. Cyberpsychol Behav 12:169–174. doi:10.1089/cpb.2008.0218

    Article  PubMed  Google Scholar 

  • Vales K, Stuchlik A (2005) Central muscarinic blockade interferes with retrieval and reacquisition of active allothetic place avoidance despite spatial pretraining. Behav Brain Res 161:238–244. doi:10.1016/j.bbr.2005.02.012

    Article  CAS  PubMed  Google Scholar 

  • Vlček K, Laczó J (2014) Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer’s disease. Front Behav Neurosci 8:89. doi:10.3389/fnbeh.2014.00089

    PubMed  PubMed Central  Google Scholar 

  • von Linstow Roloff E, Harbaran D, Micheau J et al (2007) Dissociation of cholinergic function in spatial and procedural learning in rats. Neuroscience 146:875–889. doi:10.1016/j.neuroscience.2007.02.038

  • Voss B, Thienel R, Reske M et al (2010) Cognitive performance and cholinergic transmission: influence of muscarinic and nicotinic receptor blockade. Eur Arch Psychiatry Clin Neurosci 260(Suppl):S106–S110. doi:10.1007/s00406-010-0160-8

    Article  PubMed  Google Scholar 

  • Weintraub S, Salmon D, Mercaldo N et al (2009) The Alzheimer’s disease centers’ uniform data set ({UDS):} the neuropsychological test battery. Alzheimer Dis Assoc Disord 23:91–101. doi:10.1097/WAD.0b013e318191c7dd

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitehouse PJ, Au KS (1986) Cholinergic receptors in aging and Alzheimer’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 10:665–676

    Article  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG et al (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  CAS  PubMed  Google Scholar 

  • Winblad B, Engedal K, Soininen H et al (2001) A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology 57:489–495

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Scientists from the Institute of Physiology CAS were supported by GAČR Center of Excellence P304/12/G069. Tereza Nekovarova and Ales Stuchlik were supported also by MSMT project LH14053 KONTAKT ll.

Scientists from Motol University Hospital were supported by the Grant Agency of Charles University in Prague, grant nos. 624012, 546113, 1108214, and 135215. Ministry of Health, Czech Republic—conceptual development of research organization, University Hospital Motol, Prague, Czech Republic 00064203 provided additional support of scientists from Motol University Hospital.

Scientists from the National Institute of Mental Health were also supported by the project “National Institute of Mental Health (NIMH-CZ),” grant number ED2.1.00/03.0078, and the European Regional Development Fund through the project “Sustainability for the National Institute of Mental Health,” under grant number LO1611, with additional financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the NPU I program.

Other support included the European Regional Development Fund—Project FNUSA-ICRC (No. CZ.1.05/1.1.00/02.0123) and project ICRC-ERA-HumanBridge (No. 316345), and project no. LQ1605 from the National Program of Sustainability II (MEYS CR).

Institutional support was provided by Laboratory Research Grant No. 2/2012 (699002), Excellence Grant and research project RVO: 67985823. We would like to thank Mr. F. Safar, Dr. D. Pechackova, Dr. O. Lerch, Ms. B. Zemlickova, Mr. R. Martinko, Mr. A. Chadima, and Dr. E. Hyncicova for help with data collection and Dr. M. Petrzelova for drug preparation.

All authors have read the journal’s authorship agreement and policy on disclosure of potential conflicts of interest. Dr. Harrison has received consultancy from Abbvie, Astra-Zeneca, Avraham, Boehringer Ingelheim, Bracket (Clinical), CRF Health, EnVivo Pharma, ePharmaSolutions, Eisai, Eli Lilly, Heptares, Janssen AI, Kyowa Hakko Kirin, Lundbeck, MedAvante, Merck, MyCognition, Novartis, Nutricia, Orion Pharma, Pharmanet/i3, Pfizer, Prana Biotech, ProStrakan, Reviva, Servier, Shire, TCG and TransTech Pharma & Velacor. Dr. Windisch is owner and CEO at NeuroScios GmbH. Dr. Hort has consulted for Pfizer, Janssen, Merck, Axon, Sotio, Novartis, Elan, Zentiva and Ipsen. Other authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan Laczó or Ales Stuchlik.

Additional information

Jan Laczó, Hana Markova, and Veronika Lobellova contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laczó, J., Markova, H., Lobellova, V. et al. Scopolamine disrupts place navigation in rats and humans: a translational validation of the Hidden Goal Task in the Morris water maze and a real maze for humans. Psychopharmacology 234, 535–547 (2017). https://doi.org/10.1007/s00213-016-4488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4488-2

Keywords

Navigation