Skip to main content
Log in

Absolute protein quantification by LC-ICP-MS using MeCAT peptide labeling

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nowadays, the most common strategies used in quantitative proteomics are based on isotope-coded labeling followed by specific molecule mass spectrometry. The implementation of inductively coupled plasma mass spectrometry (ICP-MS) for quantitative purposes can solve important drawbacks such as lack of sensitivity, structure-dependent responses, or difficulties in absolute quantification. Recently, lanthanide-containing labels as metal-coded affinity tag (MeCAT) reagents have been introduced, increasing the interest and scope of elemental mass spectrometry techniques for quantitative proteomics. In this work one of the first methodologies for absolute quantification of peptides and proteins using MeCAT labeling is presented. Liquid chromatography (LC) interfaced to ICP-MS has been used to separate and quantify labeled peptides while LC coupled to electrospray ionization mass spectrometry served for identification tasks. Synthetic-labeled peptides were used as standards to calibrate the response of the detector with compounds as close as possible to the target species. External calibration was employed as a quantification technique. The first step to apply this approach was MeCAT-Eu labeling and quantification by isotope dilution ICP-MS of the selected peptides. The standards were mixed in different concentrations and subjected to reverse-phase chromatography before ICP-MS detection to consider the column effect over the peptides. Thus, the prepared multi-peptide mix allowed a calibration curve to be obtained in a single chromatographic run, correcting possible non-quantitative elutions of the peptides from the column. The quantification strategy was successfully applied to other labeled peptides and to standard proteins such as digested lysozyme and bovine serum albumin.

MeCAT_Eu labeling after tryptic digestion for absolute protein quantification by LC-ICP-MS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Prange A, Pröfrock D (2008) Chemical labels and natural element tags for the quantitative analysis of biomolecules. J Anal At Spectrom 23:432–459

    Article  CAS  Google Scholar 

  2. Sanz-Medel A, Montes-Bayón M, Fernández de la Campa MR, Ruiz Encinar J, Bettmer J (2008) Elemental mass spectrometry for quantitative proteomics. Anal Bioanal Chem 390:3–16

    Article  CAS  Google Scholar 

  3. Bettmer J, Montes Bayón M, Ruiz Encinar J, Fernández Sánchez ML, Fernández de la Campa MR, Sanz Medel A (2009) The emerging role of ICP-MS in proteomic analysis. J Proteom 72:989–1005

    Article  CAS  Google Scholar 

  4. Wind M, Wegener A, Eisenmenger A, Kellner R, Lehmann WD (2003) Sulfur as the key element for quantitative protein analysis by capillary liquid chromatography coupled to element mass spectrometry. Angew Chem Int Ed 42:3425–3427

    Article  CAS  Google Scholar 

  5. Navaza AP, Encinar JR, Sanz-Medel A (2007) Absolute and accurate quantification of protein phosphorylation by using an elemental phosphorus standard and element mass spectrometry. Angew Chem Int Ed 46:569–571

    Article  CAS  Google Scholar 

  6. Siethoff C, Feldmann I, Jakubowski N, Linscheid M (1999) Quantitative determination of DNA adducts using liquid chromatography/electrospray ionization mass spectrometry and liquid chromatography/high-resolution inductively coupled plasma mass spectrometry. J Mass Spectrom 34:421–426

    Article  CAS  Google Scholar 

  7. Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443

    Article  CAS  Google Scholar 

  8. Shah M, Wuilloud RG, Kannamkumarath SS, Caruso JA (2005) Iodine speciation studies in commercially available seaweed by coupling different chromatographic techniques with UV and ICP-MS detection. J Anal At Spectrom 20:176–182

    Article  CAS  Google Scholar 

  9. Wrobel K, Wrobel K, Caruso JA (2005) Pretreatment procedures for characterization of arsenic and selenium species in complex samples utilizing coupled techniques with mass spectrometric detection. Anal Bioanal Chem 381:317–331

    Article  CAS  Google Scholar 

  10. Esteban-Fernández D, Gómez-Gómez MM, Canas B, Verdaguer JM, Ramírez-Camacho R, Palacios MA (2007) Speciation analysis of platinum antitumoral drugs in impacted tissues. Talanta 72:768–773

    Article  Google Scholar 

  11. Rappel C, Schaumlöffel D (2009) Absolute peptide quantification by lutetium labeling and nanoHPLC-ICPMS with isotope dilution analysis. Anal Chem 81:385–393

    Article  CAS  Google Scholar 

  12. Edler M, Jakubowski N, Linscheid M (2006) Quantitative determination of melphalan DNA adducts using HPLC-inductively coupled mass spectrometry. J Mass Spectrom 41:507–516

    Article  CAS  Google Scholar 

  13. Bettmer J (2010) Application of isotope dilution ICP-MS techniques to quantitative proteomics. Anal Bioanal Chem 397:3495–3502

    Article  CAS  Google Scholar 

  14. Edler M, Jakubowski N, Linscheid M (2005) Styrene oxide DNA adducts: quantitative determination using 31P monitoring. Anal Bioanl Chem 381:205–211

    Article  CAS  Google Scholar 

  15. Esteban-Fernández D, Montes-Bayón M, Blanco González E, Gómez-Gómez M, Palacios MA, Sanz-Medel A (2008) Atomic (HPLC-ICP-MS) and molecular mass spectrometry (ESI-Q-TOF) to study cis-platin interactions with serum proteins. J Anal At Spectrom 23:378–84

    Article  Google Scholar 

  16. Wind M, Edler M, Jakubowski N, Linscheid M, Wesch H, Lehmann WD (2001) Analysis of protein phosphorylation by capillary liquid chromatography coupled to element mass spectrometry with 31P detection and to electrospray mass spectrometry. Anal Chem 73:29–35

    Article  CAS  Google Scholar 

  17. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteom 1:376–386

    Article  CAS  Google Scholar 

  18. Mirgorodskaya OA, Kozmin YP, Titov MI, Korner R, Sonksen CP, Roepstorff (2000) Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using O-18 labeled internal standards. Rapid Commun Mass Spectrom 14:1226–1232

    Article  CAS  Google Scholar 

  19. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complexprotein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  CAS  Google Scholar 

  20. Schnidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4–15

    Article  Google Scholar 

  21. Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7:340–350

    Article  CAS  Google Scholar 

  22. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940–6945

    Article  CAS  Google Scholar 

  23. Whetstone PA, Butlin NG, Corneillie TM, Meares CF (2004) Element-coded affinity tags for peptides and proteins. Bioconjug Chem 15:3–6

    Article  CAS  Google Scholar 

  24. Ahrends R, Pieper S, Kühn A, Weisshoff H, Hamester M, Lindemann T, Scheler C, Lehmann K, Taubner K, Linscheid MW (2007) A metal-coded affinity tag approach to quantitative proteomics. Mol Cell Proteomics 6:1907–1916

    Article  CAS  Google Scholar 

  25. Ahrends R, Pieper S, Neumann B, Scheler C, Linscheid MW (2009) Metal-coded affinity tag labeling: a demonstration of analytical robustness and suitability for biological applications. Anal Chem 81:2176–2184

    Article  CAS  Google Scholar 

  26. Pieper S, Beck S, Ahrends R, Scheler C, Linscheid MW (2009) Rapid Commun Mass Spectrom 23:2045–2052

    Article  CAS  Google Scholar 

  27. Yan X, Xu M, Yang L, Wang Q (2010) Absolute quantification of intact proteins via 1,4,7,10-tetraazacyclodecane-1,4,7-trisacetic acid-10-maleimidoethylacetamide-europium labeling and HPLC coupled with species-unspecific isotope dilution ICPMS. Anal Chem 82:1261–1269

    Article  CAS  Google Scholar 

  28. Edler M, Metze D, Jakubowski N, Linscheid M (2002) Quantification of silylated organic compounds using gas chromatography coupled to IICP-MS. J Anal At Spectrom 17:1209–1212

    Article  CAS  Google Scholar 

  29. Rottmann L, Heumann KG (1994) Development of an on-line isotope dilution technique with HPLC/ICP-MS for the accurate determination of elemental species. Fresenius J Anal Chem 350:221–227

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft. D. E. acknowledges the European Commission for the post-doctoral Marie Curie Intra-European fellowship for career development under the seventh Framework Programme. The authors also want to thank Thermo Fisher Scientific for providing the Element XR mass spectrometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Esteban-Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteban-Fernández, D., Scheler, C. & Linscheid, M.W. Absolute protein quantification by LC-ICP-MS using MeCAT peptide labeling. Anal Bioanal Chem 401, 657–666 (2011). https://doi.org/10.1007/s00216-011-5104-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5104-2

Keywords

Navigation