Skip to main content

Advertisement

Log in

Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The exceptional photophysical properties and the nanometric dimensions of colloidal semiconductor quantum dots (QD) have strongly attracted the bioanalytical community over the last approximately 20 y. In particular, the integration of QDs in the analysis of biological components and interactions, and the related diagnostics using Förster resonance energy transfer (FRET), have allowed researchers to significantly improve and diversify fluorescence-based biosensing. In this TRENDS article, we review some recent developments in QD-FRET biosensing that have implemented this technology in electronic consumer products, multiplexed analysis, and detection without light excitation for diagnostic applications. In selected examples of smartphone-based imaging, single- and multistep FRET, steady-state and time-resolved spectroscopy, and bio/chemiluminescence detection of QDs used as both FRET donors and acceptors, we highlight the advantages of QD-based FRET biosensing for multiplexed and sensitive diagnostics.

Quantum dots (QDs) can be applied as donors and/or acceptors for Förster resonance energy transfer- (FRET-) based biosensing for multiplexed and sensitive diagnostics in various assay formats

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reiss P, Protiere M, Li L. Core/shell semiconductor nanocrystats. Small. 2009;5(2):154–68.

    Article  CAS  Google Scholar 

  2. Algar WR, Tavares AJ, Krull UJ. Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta. 2010;673(1):1–25.

    Article  CAS  Google Scholar 

  3. Algar WR, Susumu K, Delehanty JB, Medintz IL. Semiconductor quantum dots in bioanalysis: crossing the valley of death. Anal Chem. 2011;83(23):8826–37.

    Article  CAS  Google Scholar 

  4. Jin ZW, Hildebrandt N. Semiconductor quantum dots for in vitro diagnostics and cellular imaging. Trends Biotechnol. 2012;30(7):394–403.

    Article  CAS  Google Scholar 

  5. Petryayeva E, Algar WR, Medintz IL. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc. 2013;67(3):215–52.

    Article  CAS  Google Scholar 

  6. Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev. 2015;44(14):4792–834.

    Article  CAS  Google Scholar 

  7. Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, et al. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconj Chem. 2011;22(5):825–58.

    Article  CAS  Google Scholar 

  8. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, et al. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev. 2013;113(3):1904–2074.

    Article  CAS  Google Scholar 

  9. Blanco-Canosa JB, Wu M, Susumu K, Petryayeva E, Jennings TL, Dawson PE, et al. Recent progress in the bioconjugation of quantum dots. Coord Chem Rev. 2014;263:101–37.

    Article  Google Scholar 

  10. Weiss S, Bruchez M Jr., Alivisators P, inventors; Regents of the University of California, assignee. Organo Luminescent Semiconductor Nanocrystal Probes for Biological Applications and Process for Making and Using Such Probes. US005990479A. US1999 Filed Nov. 25, 1997.

  11. FRET - Förster Resonance Energy Transfer: From Theory to Applications. Wiley-VCH; 2014.

  12. Hildebrandt N. Biofunctional quantum dots: controlled conjugation for multiplexed biosensors. ACS Nano. 2011;5(7):5286–90.

    Article  CAS  Google Scholar 

  13. Geißler D, Linden S, Liermann K, Wegner KD, Charbonniere LJ, Hildebrandt N. Lanthanides and quantum dots as Förster resonance energy transfer agents for diagnostics and cellular imaging. Inorg Chem. 2014;53(4):1824–38.

    Article  Google Scholar 

  14. Curutchet C, Franceschetti A, Zunger A, Scholes GD. Examining Förster energy transfer for semiconductor nanocrystalline quantum dot donors and acceptors. J Phys Chem C. 2008;112(35):13336–41.

    Article  CAS  Google Scholar 

  15. Wegner KD, Jin ZW, Linden S, Jennings TL, Hildebrandt N. Quantum-dot-based Förster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples. ACS Nano. 2013;7(8):7411–9.

    Article  CAS  Google Scholar 

  16. Wegner KD, Linden S, Jin ZW, Jennings TL, el Khoulati R, Henegouwen PMPVE, et al. Nanobodies and nanocrystals: highly sensitive quantum dot-based homogeneous fret immunoassay for serum-based EGFR detection. Small. 2014;10(4):734–40.

    Article  CAS  Google Scholar 

  17. Hildebrandt N, Geißler D. Semiconductor quantum dots as FRET acceptors for multiplexed diagnostics and molecular ruler application. Adv Experim Med Biol. 2012;[2011/11/22 ed]:75–86.

  18. Geißler D, Charbonnière LJ, Ziessel RF, Butlin NG, Löhmannsröben H-G, Hildebrandt N. Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew Chem Int Ed. 2010;49(8):1396–401.

    Article  Google Scholar 

  19. Petryayeva E, Algar WR. A job for quantum dots: use of a smartphone and 3D-printed accessory for all-in-one excitation and imaging of photoluminescence. Anal Bioanal Chem. 2016. doi:10.1007/s00216-015-9300-3.

  20. Petryayeva E, Algar WR. Toward point-of-care diagnostics with consumer electronic devices: the expanding role of nanoparticles. Res Adv. 2015;5(28):22256–82.

    CAS  Google Scholar 

  21. Zhu H, Sikora U, Ozcan A. Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst. 2012;137(11):2541–4.

    Article  CAS  Google Scholar 

  22. Ming K, Kim J, Biondi MJ, Syed A, Chen K, Lam A, et al. Integrated quantum dot barcode smartphone optical device for wireless multiplexed diagnosis of infected patients. ACS Nano. 2015;9(3):3060–74.

    Article  CAS  Google Scholar 

  23. Petryayeva E, Algar WR. Proteolytic assays on quantum-dot-modified paper substrates using simple optical readout platforms. Anal Chem. 2013;85(18):8817–25.

    Article  CAS  Google Scholar 

  24. Petryayeva E, Algar WR. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots. Anal Chem. 2014;86(6):3195–202.

    Article  CAS  Google Scholar 

  25. Petryayeva E, Algar WR. Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDMS chips. Analyst. 2015;140(12):4037–45.

    Article  CAS  Google Scholar 

  26. Noor MO, Krull UJ. Camera-based ratiometric fluorescence transduction of nucleic acid hybridization with reagentless signal amplification on a paper-based platform using immobilized quantum dots as donors. Anal Chem. 2014;86(20):10331–9.

    Article  CAS  Google Scholar 

  27. Freeman R, Liu XQ, Willner I. Amplified multiplexed analysis of DNA by the exonuclease III-catalyzed regeneration of the target DNA in the presence of functionalized semiconductor quantum dots. Nano Lett. 2011;11(10):4456–61.

    Article  CAS  Google Scholar 

  28. Qiu X, Hildebrandt N. Rapid and multiplexed microRNA diagnostic assay using quantum dot-based Förster resonance energy transfer. ACS Nano. 2015;9(8):8449–57.

    Article  CAS  Google Scholar 

  29. Geißler D, Stufler S, Löhmannsröben H-G, Hildebrandt N. Six-color time-resolved Förster resonance energy transfer for ultrasensitive multiplexed biosensing. J Am Chem Soc. 2013;135(3):1102–9.

    Article  Google Scholar 

  30. Jin ZW, Geissler D, Qiu X, Wegner KD, Hildebrandt N. A rapid, amplification-free, and sensitive diagnostic assay for single-step multiplexed fluorescence detection of microRNA. Angew Chem Int Ed. 2015;54(34):10024–9.

    Article  CAS  Google Scholar 

  31. Algar WR, Ancona MG, Malanoski AP, Susumu K, Medintz IL. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing. ACS Nano. 2012;6(12):11044–58.

    Article  CAS  Google Scholar 

  32. Algar WR, Wegner D, Huston AL, Blanco-Canosa JB, Stewart MH, Armstrong A, et al. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. J Am Chem Soc. 2012;134(3):1876–91.

    Article  CAS  Google Scholar 

  33. Algar WR, Malanoski AP, Susumu K, Stewart MH, Hildebrandt N, Medintz IL. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay. Anal Chem. 2012;84(22):10136–46.

    Article  CAS  Google Scholar 

  34. Claussen JC, Algar WR, Hildebrandt N, Susumu K, Ancona MG, Medintz IL. Biophotonic logic devices based on quantum dots and temporally-staggered Förster energy transfer relays. Nanoscale. 2013;5(24):12156–70.

    Article  CAS  Google Scholar 

  35. Claussen JC, Hildebrandt N, Susumu K, Ancona MG, Medintz IL. Complex logic functions implemented with quantum dot bionanophotonic circuits. ACS Appl Mater Interf. 2014;6(6):3771–8.

    Article  CAS  Google Scholar 

  36. Pfleger KDG, Eidne KA. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat Methods. 2006;3(3):165.

    Article  CAS  Google Scholar 

  37. Xia ZY, Rao JH. Biosensing and imaging based on bioluminescence resonance energy transfer. Curr Opin Biotechnol. 2009;20(1):37–44.

    Article  CAS  Google Scholar 

  38. Huang XY, Ren JC. Nanomaterial-based chemiluminescence resonance energy transfer: a strategy to develop new analytical methods. TrAC Trends Anal Chem. 2012;40:77–89.

    Article  CAS  Google Scholar 

  39. Chen H, Lin L, Li H, Lin J-M. Quantum dots-enhanced chemiluminescence: mechanism and application. Coord Chem Rev. 2014;263:86–100.

    Article  Google Scholar 

  40. So MK, Xu CJ, Loening AM, Gambhir SS, Rao JH. Self-illuminating quantum dot conjugates for in vivo imaging. Nat Biotechnol. 2006;24(3):339–43.

    Article  CAS  Google Scholar 

  41. Quinones GA, Miller SC, Bhattacharyya S, Sobek D, Stephan J-P. Ultrasensitive detection of cellular protein interactions using bioluminescence resonance energy transfer quantum dot-based nanoprobes. J Cell Biochem. 2012;113(7):2397–405.

    Article  CAS  Google Scholar 

  42. Hsu C-Y, Chen C-W, Yu H-P, Lin Y-F, Lai P-S. Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy. Biomaterials. 2013;34(4):1204–12.

    Article  CAS  Google Scholar 

  43. Song WC, Shin SW, Park KS, Jang MS, Choi J-H, Oh B-K, et al. Self-illuminative cascade-reaction-driven anticancer therapeutic cassettes made of cooperatively interactive nanocomplexes. Colloids Surf B Biointerfaces. 2015;126:580–4.

    Article  CAS  Google Scholar 

  44. Alam R, Zylstra J, Fontaine DM, Branchini BR, Maye MM. Novel multistep BRET-FRET energy transfer using nanoconjugates of firefly proteins, quantum dots, and red fluorescent proteins. Nanoscale. 2013;5(12):5303–6.

    Article  CAS  Google Scholar 

  45. Dwyer CL, Díaz SA, Walper SA, Samanta A, Susumu K, Oh E, et al. Chemoenzymatic sensitization of DNA photonic wires mediated through quantum dot energy transfer relays. Chem Mater. 2015;27:6490–4.

    Article  CAS  Google Scholar 

  46. Samanta A, Walper SA, Susumu K, Dwyer CL, Medintz IL. An enzymatically-sensitized sequential and concentric energy transfer relay self-assembled around semiconductor quantum dots. Nanoscale. 2015;7(17):7603–14.

    Article  CAS  Google Scholar 

  47. Huang X, Li L, Qian H, Dong C, Ren J. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem Int Ed. 2006;45(31):5140–3.

    Article  CAS  Google Scholar 

  48. Niazov A, Freeman R, Girsh J, Willner I. Following glucose oxidase activity by chemiluminescence and chemiluminescence resonance energy transfer (CRET) processes involving enzyme-DNAzyme conjugates. Sensors. 2011;11(11):10388–97.

    Article  CAS  Google Scholar 

  49. Hu L, Liu X, Cecconello A, Willner I. Dual switchable CRET-induced luminescence of CdSe/ZnS quantum dots (QDs) by the hemin/G-quadruplex-bridged aggregation and deaggregation of two-sized QDs. Nano Lett. 2014;14(10):6030–5.

    Article  CAS  Google Scholar 

  50. Liu XQ, Freeman R, Golub E, Willner I. Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/G-quadruplexes. ACS Nano. 2011;5(9):7648–55.

    Article  CAS  Google Scholar 

  51. Freeman R, Girsh J, Jou AFJ, Ho JAA, Hug T, Dernedde J, et al. Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Anal Chem. 2012;84(14):6192–8.

    Article  CAS  Google Scholar 

  52. Liu X, Niazov-Elkan A, Wang F, Willner I. Switching photonic and electrochemical functions of a DNAzyme by DNA machines. Nano Lett. 2013;13(1):219–25.

    Article  CAS  Google Scholar 

  53. Freeman R, Liu XQ, Willner I. Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc. 2011;133(30):11597–604.

    Article  CAS  Google Scholar 

  54. Johnson BJ, Algar WR, Malanoski AP, Ancona MG, Medintz IL. Understanding enzymatic acceleration at nanoparticle interfaces: approaches and challenges. Nano Today. 2014;9(1):102–31.

    Article  CAS  Google Scholar 

  55. Breger JC, Ancona MG, Walper SA, Oh E, Susumu K, Stewart MH, et al. Understanding how nanoparticle attachment enhances phosphotriesterase kinetic efficiency. ACS Nano. 2015;9(8):8491–503.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

N.H. acknowledges the Institut Universitaire de France. D.G. acknowledges financial support from the European Commission (EMPIR project 14IND12 Innanopart).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Geißler or Niko Hildebrandt.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geißler, D., Hildebrandt, N. Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots. Anal Bioanal Chem 408, 4475–4483 (2016). https://doi.org/10.1007/s00216-016-9434-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9434-y

Keywords

Navigation