Skip to main content
Log in

Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Biofilms represent the predominant form of microbial life on our planet. These aggregates of microorganisms, which are embedded in a matrix formed by extracellular polymeric substances, may colonize nearly all interfaces. Detailed knowledge of microorganisms enclosed in biofilms as well as of the chemical composition, structure, and functions of the complex biofilm matrix and their changes at different stages of the biofilm formation and under various physical and chemical conditions is relevant in different fields. Important research topics include the development and improvement of antibiotics and medical devices and the optimization of biocides, antifouling strategies, and biological wastewater treatment. Raman microspectroscopy is a capable and nondestructive tool that can provide detailed two-dimensional and three-dimensional chemical information about biofilm constituents with the spatial resolution of an optical microscope and without interference from water. However, the sensitivity of Raman microspectroscopy is rather limited, which hampers the applicability of Raman microspectroscopy especially at low biomass concentrations. Fortunately, the resonance Raman effect as well as surface-enhanced Raman scattering can help to overcome this drawback. Furthermore, the combination of Raman microspectroscopy with other microscopic techniques, mass spectrometry techniques, or particularly with stable-isotope techniques can provide comprehensive information on monospecies and multispecies biofilms. Here, an overview of different Raman microspectroscopic techniques, including resonance Raman microspectroscopy and surface-enhanced Raman scattering microspectroscopy, for in situ detection, visualization, identification, and chemical characterization of biofilms is given, and the main feasibilities and limitations of these techniques in biofilm research are presented. Future possibilities of and challenges for Raman microspectroscopy alone and in combination with other analytical techniques for characterization of complex biofilm matrices are discussed in a critical review.

Applicability of Raman microspectroscopy for biofilm analysis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22.

    Article  CAS  Google Scholar 

  2. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108.

    Article  CAS  Google Scholar 

  3. Flemming HC. Biofouling in water systems - cases, causes and countermeasures. Appl Microbiol Biotechnol. 2002;59(6):629–40.

    Article  CAS  Google Scholar 

  4. An D, Parsek MR. The promise and peril of transcriptional profiling in biofilm communities. Curr Opin Microbiol. 2007;10(3):292–6.

    Article  CAS  Google Scholar 

  5. Stewart PS, William CJ. Antibiotic resistance of bacteria in biofilms. Lancet. 2001;358(9276):135–8.

    Article  CAS  Google Scholar 

  6. Branda SS, Vik A, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends Microbiol. 2005;13(1):20–6.

    Article  CAS  Google Scholar 

  7. Sandt C, Smith-Palmer T, Pink J, Brennan L, Pink D. Confocal Raman microspectroscopy as a tool for studying the chemical heterogeneities of biofilms in situ. J Appl Microbiol. 2007;103(5):1808–20.

    Article  CAS  Google Scholar 

  8. Ivleva NP, Wagner M, Horn H, Niessner R, Haisch C. Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Anal Bioanal Chem. 2009;393(1):197–206.

    Article  CAS  Google Scholar 

  9. Andrews JS, Rolfe SA, Huang WE, Scholes JD, Banwart SA. Biofilm formation in environmental bacteria is influenced by different macromolecules depending on genus and species. Environ Microbiol. 2010;12(9):2496–507.

    Article  CAS  Google Scholar 

  10. Chen Y-P, Zhang P, Guo J-S, Fang F, Gao X, Li C. Functional groups characteristics of EPS in biofilm growing on different carriers. Chemosphere. 2013;92(6):633–8.

    Article  CAS  Google Scholar 

  11. Lu X, Samuelson DR, Rasco BA, Konkel ME. Antimicrobial effect of diallyl sulphide on Campylobacter jejuni biofilms. J Antimicrob Chemother. 2012;67(8):1915–26.

    Article  CAS  Google Scholar 

  12. Jung GB, Nam SW, Choi S, Lee G-J, Park H-K. Evaluation of antibiotic effects on Pseudomonas aeruginosa biofilm using Raman spectroscopy and multivariate analysis. Biomed Opt Express. 2014;5(9):3238–51.

    Article  CAS  Google Scholar 

  13. Prabhawathi V, Boobalan T, Sivakumar PM, Doble M. Functionalized polycaprolactam as an active food package for antibiofilm activity and extended shelf life. Colloids Surf B. 2014;123:461–8.

    Article  CAS  Google Scholar 

  14. Kniggendorf A-K, Nogueira R, Kelb C, Schadzek P, Meinhardt-Wollweber M, Ngezahayo A, et al. Confocal Raman microscopy and fluorescent in situ hybridization - a complementary approach for biofilm analysis. Chemosphere. 2016;161:112–8.

    Article  CAS  Google Scholar 

  15. Schwartz T, Jungfer C, Heißler S, Friedrich F, Faubel W, Obst U. Combined use of molecular biology taxonomy, Raman spectrometry, and ESEM imaging to study natural biofilms grown on filter materials at waterworks. Chemosphere. 2009;77(2):249–57.

    Article  CAS  Google Scholar 

  16. Wagner M, Ivleva NP, Haisch C, Niessner R, Horn H. Combined use of confocal laser scanning microscopy (CLSM) and Raman microscopy (RM): investigations on EPS - matrix. Water Res. 2009;43(1):63–76.

    Article  CAS  Google Scholar 

  17. Feng J, de la Fuente-Nunez C, Trimble MJ, Xu J, Hancock REW, Lu X. An in situ Raman spectroscopy-based microfluidic "lab-on-a-chip" platform for non-destructive and continuous characterization of Pseudomonas aeruginosa biofilms. Chem Commun. 2015;51(43):8966–9.

    Article  CAS  Google Scholar 

  18. Masyuko RN, Lanni EJ, Driscoll CM, Shrout JD, Sweedler JV, Bohn PW. Spatial organization of Pseudomonas aeruginosa biofilms probed by combined matrix-assisted laser desorption ionization mass spectrometry and confocal Raman microscopy. Analyst. 2014;139(22):5700–8.

    Article  CAS  Google Scholar 

  19. Lanni EJ, Masyuko RN, Driscoll CM, Dunham SJB, Shrout JD, Bohn PW, et al. Correlated imaging with C(60)-SIMS and confocal Raman microscopy: visualization of cell-scale molecular distributions in bacterial biofilms. Anal Chem. 2014;86(21):10885–91.

    Article  CAS  Google Scholar 

  20. Janissen R, Murillo DM, Niza B, Sahoo PK, Nobrega MM, Cesar CL, et al. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation. Sci Rep. 2015;5.

  21. Pätzold R, Keuntje M, Anders-von AA. A new approach to non-destructive analysis of biofilms by confocal Raman microscopy. Anal Bioanal Chem. 2006;386(2):286–92.

    Article  CAS  Google Scholar 

  22. Kniggendorf A-K, Meinhardt-Wollweber M. Of microparticles and bacteria identification – (resonance) Raman micro-spectroscopy as a tool for biofilm analysis. Water Res. 2011;45(15):4571–82.

    Article  CAS  Google Scholar 

  23. Ivleva NP, Wagner M, Horn H, Niessner R, Haisch C. In situ surface-enhanced Raman scattering analysis of biofilm. Anal Chem. 2008;80(22):8538–44.

    Article  CAS  Google Scholar 

  24. Ivleva NP, Wagner M, Szkola A, Horn H, Niessner R, Haisch C. Label-free in situ SERS imaging of biofilms. J Phys Chem B. 2010;114(31):10184–94.

    Article  CAS  Google Scholar 

  25. Ivleva NP, Wagner M, Horn H, Niessner R, Haisch C. Raman microscopy and surface-enhanced Raman scattering (SERS) for in situ analysis of biofilms. J Biophotonics. 2010;3(8-9):548–56.

    Article  CAS  Google Scholar 

  26. Ramya S, George RP, Rao RVS, Dayal RK. Detection of algae and bacterial biofilms formed on titanium surfaces using micro-Raman analysis. Appl Surf Sci. 2010;256(16):5108–15.

    Article  CAS  Google Scholar 

  27. Chao Y, Zhang T. Surface-enhanced Raman scattering (SERS) revealing chemical variation during biofilm formation: from initial attachment to mature biofilm. Anal Bioanal Chem. 2012;404(5):1465–75.

    Article  CAS  Google Scholar 

  28. Efeoglu E, Culha M. In situ monitoring of biofilm formation by using surface-enhanced Raman scattering. Appl Spectrosc. 2013;67(5):498–505.

    Article  CAS  Google Scholar 

  29. Efeoglu E, Culha M. Surface-enhanced Raman scattering for biofilm characterization. Spectroscopy. 2013;28(11):36–41.

    Google Scholar 

  30. Marcotte L, Barbeau J, Lafleur M. Characterization of the diffusion of polyethylene glycol in Streptococcus mutans biofilms by Raman microspectroscopy. Appl Spectrosc. 2004;58(11):1295–301.

    Article  CAS  Google Scholar 

  31. Choo-Smith LP, Maquelin K, Van Vreeswijk T, Bruining HA, Puppels GJ, Thi NAN, et al. Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl Environ Microbiol. 2001;67(4):1461–9.

    Article  CAS  Google Scholar 

  32. Sandt C, Smith-Palmer T, Comeau J, Pink D. Quantification of water and biomass in small colony variant PAO1 biofilms by confocal Raman microspectroscopy. Appl Microbiol Biotechnol. 2009;83(6):1171–82.

    Article  CAS  Google Scholar 

  33. Samek O, Al-Marashi JFM, Telle HH. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys Lett. 2010;7(5):378–83.

    Article  CAS  Google Scholar 

  34. Beier B, Quivey R, Berger A. Raman microspectroscopy for species identification and mapping within bacterial biofilms. AMB Express. 2012;2(1):1–6.

    Article  CAS  Google Scholar 

  35. Huang WE, Bailey MJ, Thompson IP, Whiteley AS, Spiers AJ. Single-cell Raman spectral profiles of Pseudomonas fluorescens SBW25 reflects in vitro and in planta metabolic history. Microb Ecol. 2007;53(3):414-25.

    Article  CAS  Google Scholar 

  36. Huang WE, Ude S, Spiers AJ. Pseudomonas fluorescens SBW25 biofilm and planktonic cells have differentiable Raman spectral profiles. Microb Ecol. 2007;53(3):471–4.

    Article  CAS  Google Scholar 

  37. Kusić D, Kampe B, Ramoji A, Neugebauer U, Rösch P, Popp J. Raman spectroscopic differentiation of planktonic bacteria and biofilms. Anal Bioanal Chem. 2015;1–11.

  38. Smith-Palmer T, Lin S, Oguejiofor I, Leng T, Pustam A, Yang J, et al. In situ confocal Raman microscopy of hydrated early stages of bacterial biofilm formation on various surfaces in a flow cell. Appl Spectrosc. 2016;70(2):289–301.

    Article  CAS  Google Scholar 

  39. Virdis B, Harnisch F, Batstone DJ, Rabaey K, Donose BC. Non-invasive characterization of electrochemically active microbial biofilms using confocal Raman microscopy. Energy Environ Sci. 2012;5(5):7017–24.

    Article  CAS  Google Scholar 

  40. Virdis B, Millo D, Donose BC, Batstone DJ. Real-time measurements of the redox states of c-type cytochromes in electroactive biofilms: a confocal resonance Raman microscopy study. PLoS One. 2014;9(2), e89918.

    Article  CAS  Google Scholar 

  41. Lebedev N, Strycharz-Glaven SM, Tender LM. Spatially resolved confocal resonant Raman microscopic analysis of anode-grown Geobacter sulfurreducens biofilms. ChemPhysChem. 2014;15(2):320–7.

    Article  CAS  Google Scholar 

  42. Chen P, Cui L, Zhang K. Surface-enhanced Raman spectroscopy monitoring the development of dual-species biofouling on membrane surfaces. J Membr Sci. 2015;473:36–44.

    Article  CAS  Google Scholar 

  43. Cui L, Chen P, Zhang B, Zhang D, Li J, Martin FL, et al. Interrogating chemical variation via layer-by-layer SERS during biofouling and cleaning of nanofiltration membranes with further investigations into cleaning efficiency. Water Res. 2015;87:282–91.

    Article  CAS  Google Scholar 

  44. Garima S, Alka P. Combined use of Fourier transform infrared and Raman spectroscopy to study planktonic and biofilm cells of Cronobacter sakazakii. J Microbiol Biotechnol Food Sci. 2014;3(4):310–4.

    Google Scholar 

  45. Noothalapati Venkata HN, Nomura N, Shigeto S. Leucine pools in Escherichia coli biofilm discovered by Raman imaging. J Raman Spectrosc. 2011;42(11):1913–5.

    Article  CAS  Google Scholar 

  46. Suci PA, Geesey GG, Tyler BJ. Integration of Raman microscopy, differential interference contrast microscopy, and attenuated total reflection Fourier transform infrared spectroscopy to investigate chlorhexidine spatial and temporal distribution in Candida albicans biofilms. J Microbiol Methods. 2001;46(3):193–208.

    Article  CAS  Google Scholar 

  47. Kusić D, Rösch P, Popp J. Fast label-free detection of Legionella spp. in biofilms by applying immunomagnetic beads and Raman spectroscopy. Syst Appl Microbiol. 2016;39(2):132–40.

    Article  CAS  Google Scholar 

  48. Liu H, Xu Q, Huo L, Wei X, Ling J. Chemical composition of Enterococcus faecalis in biofilm cells initiated from different physiologic states. Folia Microbiol. 2014;59(5):447–53.

    Article  CAS  Google Scholar 

  49. Pätzold R, Keuntje M, Theophile K, Mueller J, Mielcarek E, Ngezahayo A, et al. In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy. J Microbiol Methods. 2008;72(3):241–8.

    Article  CAS  Google Scholar 

  50. Sandt C, Smith-Palmer T, Pink J, Pink D. A confocal Raman microscopy study of the distribution of a carotene-containing yeast in a living Pseudomonas aeruginosa biofilm. Appl Spectrosc. 2008;62(9):975–83.

    Article  CAS  Google Scholar 

  51. Kögler M, Zhang B, Cui L, Shi Y, Yliperttula M, Laaksonen T, et al. Real-time Raman based approach for identification of biofouling. Sensors Actuators B. 2016;230:411–21.

    Article  CAS  Google Scholar 

  52. Millo D, Harnisch F, Patil SA, Ly HK, Schröder U, Hildebrandt P. In situ spectroelectrochemical investigation of electrocatalytic microbial biofilms by surface-enhanced resonance Raman spectroscopy. Angew Chem Int Ed. 2011;50(11):2625–7.

    Article  CAS  Google Scholar 

  53. Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 2003;11(2):94–100.

    Article  CAS  Google Scholar 

  54. Vertes A, Hitchins V, Phillips KS. Analytical challenges of microbial biofilms on medical devices. Anal Chem. 2012;84(9):3858–66.

    Article  CAS  Google Scholar 

  55. Cam D, Keseroglu K, Kahraman M, Sahin F, Culha M. Multiplex identification of bacteria in bacterial mixtures with surface-enhanced Raman scattering. J Raman Spectrosc. 2010;41(5):484–9.

    Article  CAS  Google Scholar 

  56. Thurnheer T, Gmür R, Guggenheim B. Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods. 2004;56(1):37–47.

    Article  CAS  Google Scholar 

  57. Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, et al. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol. 2007;9(8):1878–89.

    Article  CAS  Google Scholar 

  58. Neu TR, Lawrence JR. In situ characterization of extracellular polymeric substances (EPS) in biofilm systems. Microb Extracell Polym Subst. 1999;21–47.

  59. Lawrence JR, Neu TR, Swerhone GDW. Application of multiple parameter imaging for the quantification of algal, bacterial and exopolymer components of microbial biofilms. J Microbiol Methods. 1998;32(3):253–61.

    Article  CAS  Google Scholar 

  60. Alhede M, Qvortrup K, Liebrechts R, Hoiby N, Givskov M, Bjarnsholt T. Combination of microscopic techniques reveals a comprehensive visual impression of biofilm structure and composition. FEMS Immunol Med Microbiol. 2012;65(2):335–42.

    Article  CAS  Google Scholar 

  61. Haisch C, Niessner R. Visualisation of transient processes in biofilms by optical coherence tomography. Water Res. 2007;41(11):2467–72.

    Article  CAS  Google Scholar 

  62. Li C, Felz S, Wagner M, Lackner S, Horn H. Investigating biofilm structure developing on carriers from lab-scale moving bed biofilm reactors based on light microscopy and optical coherence tomography. Bioresour Technol. 2016;200:128–36.

    Article  CAS  Google Scholar 

  63. Wright CJ, Shah MK, Powell LC, Armstrong I. Application of AFM from microbial cell to biofilm. Scanning. 2010;32(3):134–49.

    Article  CAS  Google Scholar 

  64. Schmid T, Panne U, Haisch C, Hausner M, Niessner R. A photoacoustic technique for depth-resolved in situ monitoring of biofilms. Environ Sci Technol. 2002;36(19):4135–41.

    Article  CAS  Google Scholar 

  65. Reichhardt C, Fong JCN, Yildiz F, Cegelski L. Characterization of the Vibrio cholerae extracellular matrix: a top-down solid-state NMR approach. Biochim Biophys Acta. 2015;1848(1 Part B):378–83.

    Article  CAS  Google Scholar 

  66. Beier BD, Berger AJ. Method for automated background subtraction from Raman spectra containing known contaminants. Analyst. 2009;134(6):1198–202.

    Article  CAS  Google Scholar 

  67. Rae A, Stosch R, Klapetek P, Hight Walker AR, Roy D. State of the art Raman techniques for biological applications. Methods. 2014;68(2):338–47.

    Article  CAS  Google Scholar 

  68. Palonpon AF, Ando J, Yamakoshi H, Dodo K, Sodeoka M, Kawata S, et al. Raman and SERS microscopy for molecular imaging of live cells. Nat Protoc. 2013;8(4):677–92.

    Article  CAS  Google Scholar 

  69. Hong W, Liao C-S, Zhao H, Younis W, Zhang Y, Seleem MN, et al. In situ detection of a single bacterium in complex environment by hyperspectral CARS imaging. ChemistrySelect. 2016;1(3):513–7.

    Article  CAS  Google Scholar 

  70. Schuster KC, Urlaub E, Gapes JR. Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture. J Microbiol Methods. 2000;42(1):29–38.

    Article  CAS  Google Scholar 

  71. Rösch P, Harz M, Schmitt M, Peschke K-D, Ronneberger O, Burkhardt H, et al. Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations. Appl Environ Microbiol. 2005;71(3):1626–37.

    Article  CAS  Google Scholar 

  72. Kumar V, Kampe B, Rösch P, Popp J. Classification and identification of pigmented cocci bacteria relevant to the soil environment via Raman spectroscopy. Environ Sci Pollut Res. 2015;1–9.

  73. Münchberg U, Rösch P, Bauer M, Popp J. Raman spectroscopic identification of single bacterial cells under antibiotic influence. Anal Bioanal Chem. 2014;406(13):3041–50.

    Article  CAS  Google Scholar 

  74. Harz M, Rösch P, Popp J. Vibrational spectroscopy - a powerful tool for the rapid identification of microbial cells at the single-cell level. Cytometry A. 2009;75A(2):104–13.

    Article  CAS  Google Scholar 

  75. Maquelin K, Kirschner C, Choo-Smith L-P, Ngo-Thi NA, van Vreeswijk T, Stämmler M, et al. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J Clin Microbiol. 2003;41(1):324–9.

    Article  CAS  Google Scholar 

  76. Maquelin K, Choo-Smith L-P, Endtz HP, Bruining HA, Puppels GJ. Rapid identification of Candida species by confocal Raman microspectroscopy. J Clin Microbiol. 2002;40(2):594–600.

    Article  CAS  Google Scholar 

  77. Pahlow S, Meisel S, Cialla-May D, Weber K, Rösch P, Popp J. Isolation and identification of bacteria by means of Raman spectroscopy. Adv Drug Deliv Rev. 2015;89:105–20.

    Article  CAS  Google Scholar 

  78. Spiro TG, Strekas TC. Resonance Raman spectra of heme proteins. effects of oxidation and spin state. J Am Chem Soc. 1974;96(2):338–45.

    Article  CAS  Google Scholar 

  79. Salama S, Spiro TG. Visible and near-ultraviolet resonance Raman spectra of photolabile vitamin B12 derivatives with a rapid-flow technique. J Raman Spectrosc. 1977;6(2):57–60.

    Article  CAS  Google Scholar 

  80. Lutz M. Resonance Raman spectra of chlorophyll in solution. J Raman Spectrosc. 1974;2(5):497–516.

    Article  CAS  Google Scholar 

  81. Li M, Canniffe DP, Jackson PJ, Davison PA, FitzGerald S, Dickman MJ, et al. Rapid resonance Raman microspectroscopy to probe carbon dioxide fixation by single cells in microbial communities. ISME J. 2012;6(4):875–85.

    Article  CAS  Google Scholar 

  82. Palings I, Pardoen JA, Van den Berg E, Winkel C, Lugtenburg J, Mathies RA. Assignment of fingerprint vibrations in the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin: implications for chromophore structure and environment. Biochemistry. 1987;26(9):2544–56.

    Article  CAS  Google Scholar 

  83. Copeland RA, Spiro TG. Ultraviolet resonance Raman spectroscopy of flavin mononucleotide and flavin-adenine dinucleotide. J Phys Chem. 1986;90(25):6648–54.

    Article  CAS  Google Scholar 

  84. Le Ru EC, Etchegoin PG. Single-molecule surface-enhanced Raman spectroscopy. Annu Rev Phys Chem. 2012;63(1):65–87.

    Article  CAS  Google Scholar 

  85. Etchegoin PG, Le Ru EC. A perspective on single molecule SERS: current status and future challenges. Phys Chem Chem Phys. 2008;10(40):6079–89.

    Article  CAS  Google Scholar 

  86. Guerrini L, Graham D. Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chem Soc Rev. 2012;41(21):7085–107.

    Article  CAS  Google Scholar 

  87. Zeiri L, Efrima S. Surface-enhanced Raman spectroscopy of bacteria: the effect of excitation wavelength and chemical modification of the colloidal milieu. J Raman Spectrosc. 2005;36(6/7):667–75.

    Article  CAS  Google Scholar 

  88. Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed. 2014;53(19):4756–95.

    Article  CAS  Google Scholar 

  89. Etchegoin PG, Le Ru EC. Basic electromagnetic theory of SERS. In: Schlücker S, editor. Surface enhanced Raman spectroscopy. Weinheim: Wiley-VCH; 2010. p. 1–37.

  90. Bell SEJ, Stewart A. Quantitative SERS methods. In: Schlücker S, editors. Surface enhanced Raman spectroscopy. Weinheim: Wiley-VCH; 2010. p. 71–86.

  91. Otto A. On the significance of Shalaev's ‘hot spots’ in ensemble and single-molecule SERS by adsorbates on metallic films at the percolation threshold. J Raman Spectrosc. 2006;37(9):937–47.

    Article  CAS  Google Scholar 

  92. Picorel R, Holt RE, Cotton TM, Seibert M. Surface-enhanced resonance Raman scattering spectroscopy of bacterial photosynthetic membranes. The carotenoid of Rhodospirillum rubrum. J Biol Chem. 1988;263(9):4374–80.

    CAS  Google Scholar 

  93. Efrima S, Bronk BV. Silver colloids impregnating or coating bacteria. J Phys Chem B. 1998;102(31):5947–50.

    Article  CAS  Google Scholar 

  94. Jarvis RM, Goodacre R. Characterisation and identification of bacteria using SERS. Chem Soc Rev. 2008;37(5):931–6.

    Article  CAS  Google Scholar 

  95. Efrima S, Zeiri L. Understanding SERS of bacteria. J Raman Spectrosc. 2009;40(3):277–88.

    Article  CAS  Google Scholar 

  96. Ranjith Premasiri W, Lemler P, Chen Y, Gebregziabher Y, Ziegler LD. SERS analysis of bacteria, human blood, and cancer cells: a metabolomic and diagnostic Tool. In: Ozaki Y, Kneipp K, Aroca R, editors. Frontiers of surface-enhanced Raman scattering. Chichester: Wiley; 2014. p. 257–83.

  97. Pearman WF, Lawrence-Snyder M, Angel SM, Decho AW. Surface-enhanced Raman spectroscopy for in situ measurements of signaling molecules (autoinducers) relevant to bacteria quorum sensing. Appl Spectrosc. 2007;61(12):1295–300.

    Article  CAS  Google Scholar 

  98. Bodelon G, Montes-Garcia V, Lopez-Puente V, Hill EH, Hamon C, Sanz-Ortiz MN, et al. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat Mater. 2016;15(11):1203–11.

    Article  CAS  Google Scholar 

  99. Kahraman M, Keseroglu K, Culha M. On sample preparation for surface-enhanced Raman scattering (SERS) of bacteria and the source of spectral features of the spectra. Appl Spectrosc. 2011;65(5):500–6.

    Article  CAS  Google Scholar 

  100. Zeiri L, Bronk BV, Shabtai Y, Czege J, Efrima S. Silver metal induced surface enhanced Raman of bacteria. Colloids Surf A Physicochem Eng Asp. 2002;208(1-3):357–62.

    Article  CAS  Google Scholar 

  101. Kubryk P, Niessner R, Ivleva NP. The origin of the band at around 730 cm-1 in the SERS spectra of bacteria: a stable isotope approach. Analyst. 2016;141(10):2874–8.

    Article  CAS  Google Scholar 

  102. Premasiri WR, Lee JC, Sauer-Budge A, Théberge R, Costello CE, Ziegler LD. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem. 2016;408(17):4631–47.

    Article  CAS  Google Scholar 

  103. Jarvis RM, Law N, Shadi IT, O'Brien P, Lloyd JR, Goodacre R. Surface-enhanced Raman scattering from intracellular and extracellular bacterial locations. Anal Chem. 2008;80(17):6741–6.

    Article  CAS  Google Scholar 

  104. Kahraman M, Yazici MM, Sahin F, Bayrak OF, Culha M. Reproducible surface-enhanced Raman scattering spectra of bacteria on aggregated silver nanoparticles. Appl Spectrosc. 2007;61(5):479–85.

    Article  CAS  Google Scholar 

  105. Knauer M, Ivleva NP, Niessner R, Haisch C. Optimized SERS colloids for the characterization of microorganisms. Anal Sci. 2010;26:761–6.

    Article  CAS  Google Scholar 

  106. Kahraman M, Zamaleeva AI, Fakhrullin RF, Culha M. Layer-by-layer coating of bacteria with noble metal nanoparticles for surface-enhanced Raman scattering. Anal Bioanal Chem. 2009;395(8):2559–67.

    Article  CAS  Google Scholar 

  107. Kahraman M, Yazici MM, Sahin F, Culha M. Convective assembly of bacteria for surface-enhanced Raman scattering. Langmuir. 2008;24(3):894–901.

    Article  CAS  Google Scholar 

  108. Zhou H, Yang D, Ivleva NP, Mircescu NE, Niessner R, Haisch C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal Chem. 2014;86(3):1525–33.

    Article  CAS  Google Scholar 

  109. Liu X, Knauer M, Ivleva NP, Niessner R, Haisch C. Synthesis of core-shell surface-enhanced Raman tags for bioimaging. Anal Chem. 2010;82(1):441–6.

    Article  CAS  Google Scholar 

  110. Jarvis RM, Goodacre R. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal Chem. 2004;76(1):40–7.

    Article  CAS  Google Scholar 

  111. Premasiri WR, Moir DT, Klempner MS, Krieger N, Jones II G, Ziegler LD. Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J Phys Chem B. 2005;109(1):312–20.

    Article  CAS  Google Scholar 

  112. Szeghalmi A, Kaminskyj S, Roesch P, Popp J, Gough KM. Time fluctuations and imaging in the SERS spectra of fungal Hypha grown on nanostructured substrates. J Phys Chem B. 2007;111(44):12916–24.

    Article  CAS  Google Scholar 

  113. Neugebauer U, Roesch P, Schmitt M, Popp J, Julien C, Rasmussen A, et al. On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy. ChemPhysChem. 2006;7(7):1428–30.

    Article  CAS  Google Scholar 

  114. Neugebauer U, Schmid U, Baumann K, Ziebuhr W, Kozitskaya S, Deckert V, et al. Towards a detailed understanding of bacterial metabolism: spectroscopic characterization of Staphylococcus epidermidis. ChemPhysChem. 2007;8(1):124–37.

    Article  CAS  Google Scholar 

  115. Pahlow S, März A, Seise B, Hartmann K, Freitag I, Kämmer E, et al. Bioanalytical application of surface- and tip-enhanced Raman spectroscopy. Eng Life Sci. 2012;12(2):131–43.

    Article  CAS  Google Scholar 

  116. Schmid T, Messmer A, Yeo B-S, Zhang W, Zenobi R. Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates. Anal Bioanal Chem. 2008;391(5):1907–16.

    Article  CAS  Google Scholar 

  117. Lyon LA, Keating CD, Fox AP, Baker BE, He L, Nicewarner SR, et al. Raman spectroscopy. Anal Chem. 1998;70(12):341R–61R.

    Article  CAS  Google Scholar 

  118. Kano H, Segawa H, Okuno M, Leproux P, Couderc V. Hyperspectral coherent Raman imaging – principle, theory, instrumentation, and applications to life sciences. J Raman Spectrosc. 2016;47(1):116–23.

    Article  CAS  Google Scholar 

  119. Krafft C, Popp J. The many facets of Raman spectroscopy for biomedical analysis. Anal Bioanal Chem. 2014;407(3):699–717.

    Article  CAS  Google Scholar 

  120. Camp Jr CH, Cicerone MT. Chemically sensitive bioimaging with coherent Raman scattering. Nat Photonics. 2015;9(5):295–305.

    Article  CAS  Google Scholar 

  121. Zhang X, Roeffaers MBJ, Basu S, Daniele JR, Fu D, Freudiger CW, et al. Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy. ChemPhysChem. 2012;13(4):1054–9.

    Article  CAS  Google Scholar 

  122. Wei L, Yu Y, Shen Y, Wang MC, Min W. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy. Proc Natl Acad Sci U S A. 2013;110(28):11226–31.

    Article  CAS  Google Scholar 

  123. Petrov GI, Arora R, Yakovlev VV, Wang X, Sokolov AV, Scully MO. Comparison of coherent and spontaneous Raman microspectroscopies for noninvasive detection of single bacterial endospores. Proc Natl Acad Sci U S A. 2007;104(19):7776–9.

    Article  CAS  Google Scholar 

  124. Wagner M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol. 2009;63:411–29.

    Article  CAS  Google Scholar 

  125. Watrous JD, Dorrestein PC. Imaging mass spectrometry in microbiology. Nat Rev Microbiol. 2011;9(9):683–94.

    Article  CAS  Google Scholar 

  126. Wang Y, Huang WE, Cui L, Wagner M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr Opin Biotechnol. 2016;41:34–42.

    Article  CAS  Google Scholar 

  127. Huang WE, Griffiths RI, Thompson IP, Bailey MJ, Whiteley AS. Raman microscopic analysis of single microbial cells. Anal Chem. 2004;76(15):4452–8.

    Article  CAS  Google Scholar 

  128. Huang WE, Ward AD, Whiteley AS. Raman tweezers sorting of single microbial cells. Environ Microbiol Rep. 2009;1(1):44–9.

    Article  CAS  Google Scholar 

  129. Wang Y, Ji Y, Wharfe ES, Meadows RS, March P, Goodacre R, et al. Raman activated cell ejection for isolation of single cells. Anal Chem. 2013;85(22):10697–701.

    Article  CAS  Google Scholar 

  130. Muhamadali H, Chisanga M, Subaihi A, Goodacre R. Combining Raman and FT-IR spectroscopy with quantitative isotopic labeling for differentiation of E. coli cells at community and single cell levels. Anal Chem. 2015;87(8):4578–86.

    Article  CAS  Google Scholar 

  131. Haider S, Wagner M, Schmid MC, Sixt BS, Christian JG, Häcker G, et al. Raman microspectroscopy reveals long-term extracellular activity of chlamydiae. Mol Microbiol. 2010;77(3):687–700.

    Article  CAS  Google Scholar 

  132. Noothalapati H, Shigeto S. Exploring metabolic pathways in vivo by a combined approach of mixed stable isotope-labeled Raman microspectroscopy and multivariate curve resolution analysis. Anal Chem. 2014;86(15):7828–34.

    Article  CAS  Google Scholar 

  133. Li M, Ashok PC, Dholakia K, Huang WE. Raman-activated cell counting for profiling carbon dioxide fixing microorganisms. J Phys Chem A. 2012;116(25):6560–3.

    Article  CAS  Google Scholar 

  134. Kubryk P, Kölschbach JS, Marozava S, Lueders T, Meckenstock RU, Niessner R, et al. Exploring the potential of stable isotope (resonance) Raman microspectroscopy and surface-enhanced Raman scattering for the analysis of microorganisms at single cell level. Anal Chem. 2015;87(13):6622–30.

    Article  CAS  Google Scholar 

  135. Eichorst SA, Strasser F, Woebken D, Woyke T, Schintlmeister A, Wagner M. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol Ecol. 2015;91(10).

  136. Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci U S A. 2015;112(2):E194–203.

    Article  CAS  Google Scholar 

  137. Wang Y, Song Y, Tao Y, Muhamadali H, Goodacre R, Zhou N-Y, et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal Chem. 2016;88(19):9443–50.

    Article  CAS  Google Scholar 

  138. Neufeld JD, Wagner M, Murrell JC. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 2007;1(2):103–10.

    Article  CAS  Google Scholar 

  139. Huang WE, Li M, Jarvis RM, Goodacre R, Banwart SA. Shining light on the microbial world: the application of Raman microspectroscopy. Adv Appl Microbiol. 2010;70:153–86.

    Article  CAS  Google Scholar 

  140. Bocklitz T, Putsche M, Stüber C, Käs J, Niendorf A, Rösch P, et al. A comprehensive study of classification methods for medical diagnosis. J Raman Spectrosc. 2009;40(12):1759–65.

    Article  CAS  Google Scholar 

  141. Stöckel S, Kirchhoff J, Neugebauer U, Rösch P, Popp J. The application of Raman spectroscopy for the detection and identification of microorganisms. J Raman Spectrosc. 2016;47(1):89–109.

    Article  CAS  Google Scholar 

  142. Bocklitz T, Walter A, Hartmann K, Rösch P, Popp J. How to pre-process Raman spectra for reliable and stable models? Anal Chim Acta. 2011;704(1–2):47–56.

    Article  CAS  Google Scholar 

  143. Stöckel S, Stanca AS, Helbig J, Rösch P, Popp J. Raman spectroscopic monitoring of the growth of pigmented and non-pigmented mycobacteria. Anal Bioanal Chem. 2015;407(29):8919–23.

    Article  CAS  Google Scholar 

  144. Harz M, Rosch P, Peschke KD, Ronneberger O, Burkhardt H, Popp J. Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst. 2005;130(11):1543–50.

    Article  CAS  Google Scholar 

  145. Maquelin K, Kirschner C, Choo-Smith LP, van den Braak N, Endtz HP, Naumann D, et al. Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods. 2002;51(3):255–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the German Research Foundation (Deutsche Forschungsgemeinschaft, project IV 110/2-1) and the Helmholtz Wasserzentrum München within the Helmholtz Water Network for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia P. Ivleva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivleva, N.P., Kubryk, P. & Niessner, R. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, and stable-isotope Raman microspectroscopy for biofilm characterization. Anal Bioanal Chem 409, 4353–4375 (2017). https://doi.org/10.1007/s00216-017-0303-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0303-0

Keywords

Navigation