Skip to main content

Advertisement

Log in

Abundance and Diversity of n-Alkane-Degrading Bacteria in a Forest Soil Co-Contaminated with Hydrocarbons and Metals: A Molecular Study on alkB Homologous Genes

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Unraveling functional genes related to biodegradation of organic compounds has profoundly improved our understanding of biological remediation processes, yet the ecology of such genes is only poorly understood. We used a culture-independent approach to assess the abundance and diversity of bacteria catalyzing the degradation of n-alkanes with a chain length between C5 and C16 at a forest site co-contaminated with mineral oil hydrocarbons and metals for nearly 60 years. The alkB gene coding for a rubredoxin-dependent alkane monooxygenase enzyme involved in the initial activation step of aerobic aliphatic hydrocarbon metabolism was used as biomarker. Within the area of study, four different zones were evaluated: one highly contaminated, two intermediately contaminated, and a noncontaminated zone. Contaminant concentrations, hydrocarbon profiles, and soil microbial respiration and biomass were studied. Abundance of n-alkane-degrading bacteria was quantified via real-time PCR of alkB, whereas genetic diversity was examined using molecular fingerprints (T-RFLP) and clone libraries. Along the contamination plume, hydrocarbon profiles and increased respiration rates suggested on-going natural attenuation at the site. Gene copy numbers of alkB were similar in contaminated and control areas. However, T-RFLP-based fingerprints suggested lower diversity and evenness of the n-alkane-degrading bacterial community in the highly contaminated zone compared to the other areas; both diversity and evenness were negatively correlated with metal and hydrocarbon concentrations. Phylogenetic analysis of alkB denoted a shift of the hydrocarbon-degrading bacterial community from Gram-positive bacteria in the control zone (most similar to Mycobacterium and Nocardia types) to Gram-negative genotypes in the contaminated zones (Acinetobacter and alkB sequences with little similarity to those of known bacteria). Our results underscore a qualitative rather than a quantitative response of hydrocarbon-degrading bacteria to the contamination at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Dawson JJC, Godsiffe EJ, Thompson IP, Ralebitso-Senior TK, Killham KS, Paton GI (2007) Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biol Biochem 39:164–177

    Article  CAS  Google Scholar 

  2. Saterback A, Toy RJ, McMain BJ, Williams MP, Dorn PB (2000) Ecotoxicology and analytical assessment of effects of bioremediation on hydrocarbon-containing soils. Environ Toxicol Chem 19:2643–2652

    Article  Google Scholar 

  3. SERDP ESTCP (2005) Expert panel workshop on research and development needs for the environmental remediation application of molecular biological tools https://www.serdp-estcp.org/News-and-Events/Conferences-Workshops/Past-ER-Workshops

  4. Martin dos Santos VAP, Yakimov M, Timmis KN, Golyshin PN (2008) In: Diaz E (ed) Genomic insights into oil biodegradation in marine systems microbial biodegradation genomics and molecular biology caister. Academic, Norfolk, pp 269–296

    Google Scholar 

  5. Wentzel A, Ellingsen TE, Kotlar HK, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221

    Article  CAS  PubMed  Google Scholar 

  6. van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21

    Article  CAS  PubMed  Google Scholar 

  7. van Beilen JB, Li Z, Duetz WA, Smits THM, Witholt B (2003) Diversity of alkane hydroxylase systems in the environment oil gas. Sci Technol Rev IFP 58:427–440

    Article  Google Scholar 

  8. Baek K-H, Byung-Dae Y, Hee-Mock O, Hee-Sik K (2006) Biodegradation of aliphatic and aromatic hydrocarbons by Nocardia sp H17-1. Geomicrobiol J 23:253–259

    Article  CAS  Google Scholar 

  9. Hara A, Baik S, Syutsubo K, Misawa N, Smits THM, van Beilen JB (2004) Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environ Microbiol 6:191–197

    Article  CAS  PubMed  Google Scholar 

  10. Kloos K, Munch JC, Schloter M (2006) A new method for the detection of alkane monooxygenase homologous genes (alkB) in soils based on PCR-hybridization. J Microbiol Methods 66:486–496

    Article  CAS  PubMed  Google Scholar 

  11. Kuhn E, Bellicanta GS, Pellizari V (2009) New alk genes detected in Antarctic marine sediments. Environ Microbiol 11:669–673

    Article  CAS  PubMed  Google Scholar 

  12. Mehboob F, Junca H, Schraa G, Stams AJM (2009) Growth of pseudomonas chloritidis mutants AW-1 T on n-alkanes with chlorate as electron acceptor. Appl Microbiol Biotechnol 83:739–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Powell SM, Ferguson SH, Bowman JP, Snape I (2006) Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microb Ecol 52:523–532

    Article  CAS  PubMed  Google Scholar 

  14. Smits THM, Balada SB, Witholt B, van Beilen JB (2002) Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J Bacteriol 184:1733–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Whyte LG, Greer CW, Inniss WE (1996) Assessment of the biodegradation potential of psychrotrophic microorganisms. Can J Microbiol 42:99–106

    Article  CAS  PubMed  Google Scholar 

  16. Hamamura N, Fukui M, Ward DM, Inskeep WP (2008) Assessing soil microbial populations responding to crude-oil amendment at different temperatures using phylogenetic functional gene (alkB) and physiological analyses. Environ Sci Technol 42:7580–7586

    Article  CAS  PubMed  Google Scholar 

  17. Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salminen JM, Tuomi PM, Jørgensen KS (2008) Functional gene abundances (nahAc, alkB, xylE) in the assessment of the efficacy of bioremediation. Appl Biochem Biotechnol 151:638–652

    Article  CAS  PubMed  Google Scholar 

  19. Foken T (2007) Das Klima von Bayreuth Status quo und Aufgaben für die Stadtplanung Standort Zeitschrift für Angewandte Geographie 31:150–152

  20. AG Bodenkunde der Geologischen Landesamter un der Bundesanstalt fur Geowissenchaften und Rohstoffe in der Bundesrepublik Deutschland (1982) Bodenkundliche Kartieranleitung (Guidance for Soil Mapping) (in German) 3. Auflage, Hannover, Germany

  21. IUSS Working Group WRB (2006) World reference base for soil resources 2nd edition. World Soil Resources Reports No 103 FAO, Rome, Italy

  22. Kloos K, Schloter M, Meyer O (2006) Microbial activity in an acid resin deposit: biodegradation potential and ecotoxicology in an extremely acidic hydrocarbon contamination. Environ Pollut 144:136–144

    Article  CAS  PubMed  Google Scholar 

  23. Pérez-de-Mora A, Madejón E, Cabrera F, Buegger F, Fuß R, Pritsch K, Schloter M (2008) Long-term impact of acid resin waste deposits on soil quality of forest areas I contaminants and abiotic properties. Sci Total Environ 406:88–98

    Article  PubMed  Google Scholar 

  24. Pérez-de-Mora A, Madejón E, Cabrera F, Buegger F, Fuß R, Pritsch K, Schloter M (2008) Long-term impact of acid resin waste deposits on soil quality of forest areas II biological indicators. Sci Total Environ 406:99–107

    Article  PubMed  Google Scholar 

  25. Vance ED, Brookes PC, Jenkinson DS (1987) Microbial biomass measurements in forest soils: determination of Kc values and test of hypothesis to explain the failure of the chloroform fumigation-incubation method in acid soils. Soil Biol Biochem 19:381–387

    Article  Google Scholar 

  26. Joergensen RG, Mueller T (1996) The fumigation–extraction method to estimate soil microbial biomass: calibration of the k(EN) value. Soil Biol Biochem 28:33–37

    Article  CAS  Google Scholar 

  27. Griffiths RI, Whiteley A, O’donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pérez-de-Mora A, Schulz S, Schloter M (2010) MPN- and real time- based PCR methods for the quantification of alkane-monooxygenase homologous genes (alkB) in environmental samples. In: Cunningham SP (ed) Bioremediation methods in molecular biology 599. Human, New York, pp 59–68

    Google Scholar 

  29. Schulz S, Peréz-de-Mora A, Engel M, Munch JC, Schloter M (2010) A comparative study of most probable number (MPN)-PCR vs real-time-PCR for the measurement of abundance and assessment of diversity of alkB homologous genes in soil. J Microbiol Methods 80:295–298

    Article  CAS  PubMed  Google Scholar 

  30. Osborn AM, Moore ERB, Timmis KN (2000) An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50

    Article  CAS  PubMed  Google Scholar 

  31. Margalef R (1958) Information theory in ecology. Gen Syst 3:36–71

    Google Scholar 

  32. Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

    Article  Google Scholar 

  33. Lorenz MO (1905) Methods of measuring the concentration of wealth. Publications of the American statistical association 9:209–219

  34. Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  CAS  PubMed  Google Scholar 

  35. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid. DNA Nucleic Acid Res 7:1513–1523

    Article  CAS  PubMed  Google Scholar 

  36. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knoledge and analysis. Nucleic Acid Res 31:3784–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ludwig W et al (2004) ARB: a software environment for sequence data. Nucleic Acid Res 32:1363–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holland SM (2003) Analytic rarefaction 13 http://strata.uga.edu/software/anRareReadme.html

  39. McCune B, Mefford MJ (2006) PC-ORD Multivariate analysis of ecological data version 5 Gleneden Beach Oregon USA

  40. McCune B, Grace JB (2002) Analysis of ecological communities Gleneden Beach Oregon USA

  41. Wang Z, Stout SA, Fingas M (2006) Forensic fingerprinting of biomarkers for oil spill characterization and source identification. Environ Forensics 7:105–146

    Article  CAS  Google Scholar 

  42. Powell SM, Bowman JP, Ferguson SH, Snape I (2010) The importance of soil characteristics to the structure of alkane-degrading bacterial communities on sub-Antarctic Macquarie Island. Soil Biol Biochem 42:2012–2021

    Article  CAS  Google Scholar 

  43. Luz AP, Pellizari VH, Whyte LG, Greer CW (2004) A survey of indigenous microbial hydrocarbon degradation genes in soils from Antarctica and Brazil. Can J Microbiol 50:323–333

    Article  CAS  PubMed  Google Scholar 

  44. Vázquez S, Nogales B, Ruberto L, Hernandez E, Christie-Oleza J, Lo Balbo A, Bosch R, Lalucat J, MacCormack W (2009) Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil. Microb Ecol 57:598–610

    Article  PubMed  Google Scholar 

  45. Benyahia F, Abdulkarim M, Zekri A, Chaalal O, Hasanain H (2005) Bioremediation of crude oil contaminated soils a black art or an engineering challenge? Proc Saf Environ 83:364–370

    Article  CAS  Google Scholar 

  46. Margesin R, Zimmerbauer A, Schinner F (2000) Monitoring of bioremediation by soil biological activities. Chemosphere 40:339–346

    Article  CAS  PubMed  Google Scholar 

  47. Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fert Soils 19:269–275

    Article  CAS  Google Scholar 

  48. Filip Z (2002) International approach to assessing soil quality by ecologically-related biological parameters. Agr Ecosys Environ 88:169–174

    Article  Google Scholar 

  49. Silver S, Phung LT (1996) Bacterial heavy metla resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  CAS  PubMed  Google Scholar 

  50. Paisse S, Coulon F, Goni-Urriza M, Peperzak L, McGenity TJ, Duran R (2008) Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment FEMS. Microbiol Ecol 66:295–305

    Article  CAS  Google Scholar 

  51. Thies JE (2007) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71(2):579–591

    Article  CAS  Google Scholar 

  52. Coulon F, McKew BA, Osborn AM, McGenity TJ, Timmis KN (2007) Effects of temperature and biostimulation on oildegrading microbial communities in temperate estuarine waters. Environ Microbiol 9:177–186

    Article  CAS  PubMed  Google Scholar 

  53. Röling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJP, Head IM (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68:5537–5548

    Article  PubMed  PubMed Central  Google Scholar 

  54. Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders L (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801

    Article  CAS  PubMed  Google Scholar 

  55. Shi W, Becker J, Bischoff M, Turco RF, Konopka AE (2002) Association of microbial community composition and activity with lead, chromium, and hydrocarbon contamination. Appl Environ Microbiol 68:3859–3866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shi W, Bischoff M, Turco R, Konopka A (2005) Microbial catabolic diversity in soils contaminated with hydrocarbons and heavy metals. Environ Sci Technol 39:1974–1979

    Article  CAS  PubMed  Google Scholar 

  57. Atlas RM (1984) Use of microbial diversity measurements to assess environmental stress. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington DC, pp 540–545

    Google Scholar 

  58. Hamamura N, Yeager CM, Arp DJ (2001) Two distinct monooxygenases for alkane oxidation in Nocardiodes sp strain CF8. Appl Environ Microbiol 67:4992–4998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vomberg A, Klinner U (2000) Distribution of alkB genes within n-alkane-degrading bacteria. J Appl Microbiol 89:339–348

    Article  CAS  PubMed  Google Scholar 

  60. Kaplan CW, Kitts CL (2004) Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70(3):1777–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stephen JR, Chang Y, Gan YD, Peacock A, Pfiffner SM, Barcelona MJ, White DM, Macnaughton SJ (1999) Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE)-based approach. Environ Microbiol 1:231–241

    Article  CAS  PubMed  Google Scholar 

  62. Huu NB, Denner EBM, Ha DTC, Wanner G, Stan-Lotter H (1999) Marinobacter aquaeolei sp nov a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375

    Article  CAS  PubMed  Google Scholar 

  63. Maeng JH, Sakai Y, Tani Y, Kato N (1996) Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp strain M-1. J Bacteriol 178:3695–3700

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sakai Y, Maeng JH, Tani Y, Kato N (1994) Use of long-chain n-alkanes (C13-C44) by an isolate Acinetobacter sp M-1. Biosci Biotechnol Biochem 58:2128–2130

    Article  CAS  Google Scholar 

  65. Heiss-Blanquet S, Benoit Y, Maréchaux C, Monot F (2005) Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR. J Appl Microbiol 99:1392–1403

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Pérez-de-Mora thanks the Spanish Ministry of Education and Science (MEC) for the fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Pérez-de-Mora.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Relative T-RF patterns of the alkB gene in soil samples from the different zones of contamination (small letters ae indicate field replicates from the corresponding sites). C B control zone, X B1 highly contaminated zone, X B2 and X B3 intermediately contaminated zones (RTF 372 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-de-Mora, A., Engel, M. & Schloter, M. Abundance and Diversity of n-Alkane-Degrading Bacteria in a Forest Soil Co-Contaminated with Hydrocarbons and Metals: A Molecular Study on alkB Homologous Genes. Microb Ecol 62, 959–972 (2011). https://doi.org/10.1007/s00248-011-9858-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9858-z

Keywords

Navigation