Skip to main content

Advertisement

Log in

Tracing Aquatic Priming Effect During Microbial Decomposition of Terrestrial Dissolved Organic Carbon in Chemostat Experiments

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial decomposition of terrestrial carbon may be enhanced by the addition of easily decomposable compounds, a phenomenon referred to as priming effect. We investigated the microbial decomposition of terrestrial dissolved organic carbon (DOC) in one-stage and two-stage flow-through cultures (chemostats) in the absence and presence of growing phytoplankton as phytoplankton-derived organic matter might facilitate the mineralization of more refractory terrestrial compounds. Peat water and soil leachate were used as terrestrial substrates, and only slight DOC decomposition was observed in the absence of phytoplankton for both substrates. A priming effect was revealed via 14C data. Priming was more pronounced for the peat water substrate than for the soil leachate. The total DOC concentrations increased for both substrates in the presence of phytoplankton due to exudation and cell lysis. Samples from the soil leachate experiments were analyzed using ultra-high-resolution mass spectrometry (FT-ICR MS). Predominantly, the same saturated, aliphatic molecules with H/C ratios >1.5 were completely decomposed in the absence and in the presence of phytoplankton. The decomposition of more stable molecules differed in their intensity. Oxidized and unsaturated molecules with H/C ratios <1.0 and O/C ratios >0.4 were more strongly decomposed in phytoplankton presence (i.e., under priming). We conclude that an aquatic priming effect is not easily detectable via net concentration changes alone, and that qualitative investigations of the DOC processed by bacterial decomposition are necessary to detect aquatic priming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–110

    Article  CAS  Google Scholar 

  2. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  CAS  Google Scholar 

  3. Marín-Spiotta E, Gruley K, Crawford J, Atkinson E, Miesel J, Greene S, Cardona-Correa C, Spencer R (2014) Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry 117:279–297

    Article  Google Scholar 

  4. Wetzel RG (2001) Limnology: lake and river ecosystems. Gulf Professional Publishing, San Diego

    Google Scholar 

  5. Cole JJ, Pace ML, Carpenter SR, Kitchell JF (2000) Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnol Oceanogr 45:1718–1730

    Article  Google Scholar 

  6. Del Giorgio PA, Cole JJ, Cimbleris A (1997) Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385:148–151

    Article  CAS  Google Scholar 

  7. Jansson M, Bergström A-K, Blomqvist P, Drakare S (2000) Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81:3250–3255

    Article  Google Scholar 

  8. Algesten G, Sobek S, Bergström AK, Ågren A, Tranvik LJ, Jansson M (2004) Role of lakes for organic carbon cycling in the boreal zone. Glob Chang Biol 10:141–147

    Article  Google Scholar 

  9. Caraco N, Cole J (2004) When terrestrial organic matter is sent down the river: the importance of allochthonous carbon inputs to the metabolism of lakes and rivers. In: Polis GA, Power ME, Huxel GR (eds) Food webs at the landscape level. University of Chicago Press, Chicago, pp. 301–316

    Google Scholar 

  10. Weyhenmeyer GA, Fröberg M, Karltun E, Khalili M, Kothawala D, Temnerud J, Tranvik LJ (2012) Selective decay of terrestrial organic carbon during transport from land to sea. Glob Chang Biol 18:349–355

    Article  Google Scholar 

  11. Aitkenhead-Peterson J, McDowell W, Neff J (2003) Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. In: Findlay S, Sinsabaugh R (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, New York, pp. 25–70

    Chapter  Google Scholar 

  12. Bertilsson S, Jones J (2003) Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources. In: Findlay S, Sinsabaugh R (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, New York, pp. 3–25

    Chapter  Google Scholar 

  13. Blagodatskaya Е, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131

    Article  Google Scholar 

  14. Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    Article  CAS  PubMed  Google Scholar 

  15. Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    Article  CAS  Google Scholar 

  16. Guenet B, Danger M, Abbadie L, Lacroix G (2010) Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91:2850–2861

    Article  PubMed  Google Scholar 

  17. Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  18. Guenet B, Danger M, Harrault L, Allard B, Jauset-Alcala M, Bardoux G, Benest D, Abbadie L, Lacroix G (2014) Fast mineralization of land-born C in inland waters: first experimental evidences of aquatic priming effect. Hydrobiologia 721:35–44

    Article  CAS  Google Scholar 

  19. Kuehn KA, Francoeur SN, Findlay RH, Neely RK (2014) Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers. Ecology 95:749–762

    Article  PubMed  Google Scholar 

  20. Bianchi TS, Thornton DC, Yvon-Lewis SA, King GM, Eglinton TI, Shields MR, Ward ND, Curtis J (2015) Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system. Geophys Res Lett 42:5460–5467

    Article  CAS  Google Scholar 

  21. Danger M, Cornut J, Chauvet E, Chavez P, Elger A, Lecerf A (2013) Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94:1604–1613

    Article  PubMed  Google Scholar 

  22. Catalán N, Kellerman AM, Peter H, Carmona F, Tranvik LJ (2015) Absence of a priming effect on dissolved organic carbon degradation in lake water. Limnol Oceanogr 60:159–168

    Article  Google Scholar 

  23. Dorado-García I, Syväranta J, Devlin SP, Medina-Sánchez JM, Jones RI (2016) Experimental assessment of a possible microbial priming effect in a humic boreal lake. Aquat Sci 78:191–202

    Article  Google Scholar 

  24. Bengtsson MM, Wagner K, Burns NR, Herberg ER, Wanek W, Kaplan LA, Battin TJ (2014) No evidence of aquatic priming effects in hyporheic zone microcosms. Sci Rep 4:5187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guillemette F, McCallister SL, del Giorgio PA (2015) Selective consumption and metabolic allocation of terrestrial and algal carbon determine allochthony in lake bacteria. ISME J. doi:10.1038/ismej.2015.215

    PubMed  PubMed Central  Google Scholar 

  26. Moran MA, Hodson RE (1994) Support of bacterioplankton production by dissolved humic substances from three marine environments. Mar Ecol Prog Ser 110:241–241

    Article  CAS  Google Scholar 

  27. Tranvik LJ (1998) Degradation of dissolved organic matter in humic waters by bacteria. In: Hessen DO, Tranvik LJ (eds) Aquatic humic substances: ecology and biogeochemistry. Springer, Berlin, pp. 259–283

    Chapter  Google Scholar 

  28. Chen W, Wangersky PJ (1996) Rates of microbial degradation of dissolved organic carbon from phytoplankton cultures. J Plankton Res 18:1521–1533

    Article  Google Scholar 

  29. Guillemette F, McCallister SL, Del Giorgio PA (2013) Differentiating the degradation dynamics of algal and terrestrial carbon within complex natural dissolved organic carbon in temperate lakes. J Geophys Res Biogeosci 118:963–973

    Article  CAS  Google Scholar 

  30. Kritzberg ES, Cole JJ, Pace ML, Granéli W, Bade DL (2004) Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake 13C addition experiments. Limnol Oceanogr 49:588–596

    Article  CAS  Google Scholar 

  31. Nguyen M-L, Westerhoff P, Baker L, Hu Q, Esparza-Soto M, Sommerfeld M (2005) Characteristics and reactivity of algae-produced dissolved organic carbon. J Environ Eng 131:1574–1582

    Article  CAS  Google Scholar 

  32. Fagerbakke KM, Heldal M, Norland S (1996) Content of carbon, nitrogen, oxygen, sulfur and phosphorus in native aquatic and cultured bacteria. Aquat Microb Ecol 10:15–27

    Article  Google Scholar 

  33. Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms: I Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  34. Horemans B, Vandermaesen J, Smolders E, Springael D (2013) Cooperative dissolved organic carbon assimilation by a linuron-degrading bacterial consortium. FEMS Microb Ecol 84:35–46

    Article  CAS  Google Scholar 

  35. Friese K, Schultze M, Boehrer B, Büttner O, Herzsprung P, Koschorreck M, Kuehn B, Rönicke H, Wendt-Potthoff K, Wollschläger U (2014) Ecological response of two hydro-morphological similar pre-dams to contrasting land-use in the Rappbode reservoir system (Germany). Int Rev Hydrobiol 99:335–349

    Article  CAS  Google Scholar 

  36. Rinke K, Kuehn B, Bocaniov S, Wendt-Potthoff K, Büttner O, Tittel J, Schultze M, Herzsprung P, Rönicke H, Rink K (2013) Reservoirs as sentinels of catchments: the Rappbode Reservoir Observatory (Harz Mountains, Germany). Environ Earth Sci 69:523–536

    Article  Google Scholar 

  37. Kamjunke N, Köhler B, Wannicke N (2008) Algae as competitors for glucose with heterotrophic bacteria. J Phycol 44:616–623

    Article  CAS  PubMed  Google Scholar 

  38. Kamjunke N, Tittel J (2009) Mixotrophic algae constrain the loss of organic carbon by exudation. J Phycol 45:807–811

    Article  CAS  PubMed  Google Scholar 

  39. Denward CMT, Tranvik LJ (1998) Effects of solar radiation on aquatic macrophyte litter decomposition. Oikos:51–58

  40. De Haan H (1993) Solar UV-light penetration and photodegradation of humic substances in peaty lake water. Limnol Oceanogr 38:1072–1076

    Article  Google Scholar 

  41. Kieber RJ, Whitehead RF, Skrabal SA (2006) Photochemical production of dissolved organic carbon from resuspended sediments. Limnol Oceanogr 51:2187–2195

    Article  CAS  Google Scholar 

  42. Wiegner TN, Seitzinger SP (2001) Photochemical and microbial degradation of external dissolved organic matter inputs to rivers. Aquat Microb Ecol 24:27–40

    Article  Google Scholar 

  43. Bertilsson S, Tranvik LJ (2000) Photochemical transformation of dissolved organic matter in lakes. Limnol Oceanogr 45:753–762

    Article  CAS  Google Scholar 

  44. Wetzel RG, Hatcher PG, Bianchi TS (1995) Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol Oceanogr 40:1369–1380

    Article  CAS  Google Scholar 

  45. Koehler B, Broman E, Tranvik LJ (2016) Apparent quantum yield of photochemical dissolved organic carbon mineralization in lakes. Limnol Oceanogr 61:2207–2221

    Article  CAS  Google Scholar 

  46. Vachon D, Lapierre JF, Giorgio PA (2016) Seasonality of photo-chemical dissolved organic carbon mineralization and its relative contribution to pelagic CO2 production in northern lakes. J Geophys Res Biogeosci 121:864–878

    Article  CAS  Google Scholar 

  47. Kamjunke N, Tittel J, Krumbeck H, Beulker C, Poerschmann J (2005) High heterotrophic bacterial production in acidic, iron-rich mining lakes. Microb Ecol 49:425–433

    Article  CAS  PubMed  Google Scholar 

  48. Tittel J, Büttner O, Freier K, Heiser A, Sudbrack R, Ollesch G (2013) The age of terrestrial carbon export and rainfall intensity in a temperate river headwater system. Biogeochemistry 115:53–63

    Article  CAS  Google Scholar 

  49. Lorrain A, Savoye N, Chauvaud L, Paulet Y-M, Naulet N (2003) Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material. Anal Chim Acta 491:125–133

    Article  CAS  Google Scholar 

  50. Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363

    Article  Google Scholar 

  51. Raeke J, Lechtenfeld OJ, Wagner M, Herzsprung P, Reemtsma T (2016) Selectivity of solid phase extraction of freshwater dissolved organic matter and its effect on ultrahigh resolution mass spectra. Environ Sci Process Impacts. doi:10.1039/C6EM00200E

    PubMed  Google Scholar 

  52. Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  53. Lechtenfeld OJ, Kattner G, Flerus R, McCallister SL, Schmitt-Kopplin P, Koch BP (2014) Molecular transformation and degradation of refractory dissolved organic matter in the Atlantic and Southern Ocean. Geochim Cosmochim Acta 126:321–337

    Article  CAS  Google Scholar 

  54. Pellegrin V (1983) Molecular formulas of organic compounds: the nitrogen rule and degree of unsaturation. J Chem Educ 60:626–633

    Article  CAS  Google Scholar 

  55. Sleighter RL, Chen H, Wozniak AS, Willoughby AS, Caricasole P, Hatcher PG (2012) Establishing a measure of reproducibility of ultrahigh-resolution mass spectra for complex mixtures of natural organic matter. Anal Chem 84:9184–9191

    CAS  PubMed  Google Scholar 

  56. Tittel J, Müller C, Schultze M, Musolff A, Knöller K (2015) Fluvial radiocarbon and its temporal variability during contrasting hydrological conditions. Biogeochemistry 126:57–69

    Article  CAS  Google Scholar 

  57. Graven HD (2015) Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proc Natl Acad Sci USA 112:9542–9545. doi:10.1073/pnas.1504467112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Levin I, Kromer B (2004) The tropospheric 14CO2 level in mid latitudes of the Northern Hemisphere (1959-2003). Radiocarbon 46:1261–1271

    Article  CAS  Google Scholar 

  59. Berggren M, Giorgio PA (2015) Distinct patterns of microbial metabolism associated to riverine dissolved organic carbon of different source and quality. J Geophys Res Biogeosci 120:989–999

    Article  CAS  Google Scholar 

  60. Aitkenhead J, Hope D, Billett M (1999) The relationship between dissolved organic carbon in stream water and soil organic carbon pools at different spatial scales. Hydrol Process 13:1289–1302

    Article  Google Scholar 

  61. Dillon P, Molot L (1997) Effect of landscape form on export of dissolved organic carbon, iron, and phosphorus from forested stream catchments. Water Resour Res 33:2591–2600

    Article  CAS  Google Scholar 

  62. Frey KE, Smith LC (2005) Amplified carbon release from vast West Siberian peatlands by 2100. Geophys Res Lett 32:L09401

    Google Scholar 

  63. D’Andrilli J, Cooper WT, Foreman CM, Marshall AG (2015) An ultrahigh-resolution mass spectrometry index to estimate natural organic matter lability. Rapid Commun Mass Spectrom 29:2385–2401

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lu Y, Li X, Mesfioui R, Bauer JE, Chambers R, Canuel EA, Hatcher PG (2015) Use of ESI-FTICR-MS to characterize dissolved organic matter in headwater streams draining forest-dominated and pasture-dominated watersheds. PLoS One 10:e0145639

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sleighter RL, Cory RM, Kaplan LA, Abdulla HA, Hatcher PG (2014) A coupled geochemical and biogeochemical approach to characterize the bioreactivity of dissolved organic matter from a headwater stream. J Geophys Res Biogeosci 119:1520–1537

    Article  CAS  Google Scholar 

  66. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    Article  CAS  PubMed  Google Scholar 

  67. Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13:291–314

    Article  Google Scholar 

  68. Doucett RR, Barton DR, Guiguer KR, Power G, Drimmie RJ (1996) Comment: critical examination of stable isotope analysis as a means for tracing carbon pathways in stream ecosystems. Can J Fish Aquat Sci 53:1913–1915

    Article  Google Scholar 

  69. McCallister SL, Guillemette F, Del Giorgio PA (2006) A system to quantitatively recover bacterioplankton respiratory CO2 for isotopic analysis to trace sources and ages of organic matter consumed in freshwaters. Limnol Oceanogr Methods 4:406–415

    Article  CAS  Google Scholar 

  70. Morling K, Kamjunke N, Tittel J (2016) A simplified method of recovering CO2 from bacterioplankton respiration for isotopic analysis. J Microbiol Methods 121:8–10

    Article  CAS  PubMed  Google Scholar 

  71. Dioumaeva I, Trumbore S, Schuur EA, Goulden ML, Litvak M, Hirsch AI (2002) Decomposition of peat from upland boreal forest: temperature dependence and sources of respired carbon. J Geophys Res Atmos 107:WFX 3-1–WFX 3-12

    Google Scholar 

  72. McCallister SL, del Giorgio PA (2012) Evidence for the respiration of ancient terrestrial organic C in northern temperate lakes and streams. Proc Natl Acad Sci U S A 109:16963–16968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Morling K, Herzsprung P, Kamjunke N (2017) Discharge determines production of, decomposition of and quality changes in dissolved organic carbon in pre-dams of drinking water reservoirs. Sci Total Environ 577:329–339

    Article  CAS  PubMed  Google Scholar 

  74. Hamer U, Marschner B (2002) Priming effects of sugars, amino acids, organic acids and catechol on the mineralisation of lignin and peat. J Plant Nutr Soil Sci 165:261–268

    Article  CAS  Google Scholar 

  75. Hamer U, Marschner B (2005) Priming effects in soils after combined and repeated substrate additions. Geoderma 128:38–51

    Article  CAS  Google Scholar 

  76. Zimmerman AR, Gao B, Ahn M-Y (2011) Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179

    Article  CAS  Google Scholar 

  77. Pascault N, Ranjard L, Kaisermann A, Bachar D, Christen R, Terrat S, Mathieu O, Lévêque J, Mougel C, Henault C, Lemanceau P, Péan M, Boiry S, Fontaine S, Maron P-A (2013) Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems 16:810–822

    Article  CAS  Google Scholar 

  78. Attermeyer K, Hornick T, Kayler Z, Bahr A, Zwirnmann E, Grossart H-P, Premke K (2014) Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition. Biogeosciences 11:1479–1489

    Article  CAS  Google Scholar 

  79. Gonsior M, Peake BM, Cooper WT, Podgorski D, D’Andrilli J, Cooper WJ (2009) Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol 43:698–703

    Article  CAS  PubMed  Google Scholar 

  80. Obernosterer I, Benner R (2004) Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnol Oceanogr 49:117–124

    Article  CAS  Google Scholar 

  81. Stubbins A, Spencer RGM, Chen H, Hatcher PG, Mopper K, Hernes PJ, Mwamba VL, Mangangu AM, Wabakanghanzi JN, Six J (2010) Illuminated darkness: molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol Oceanogr 55:1467–1477

    Article  CAS  Google Scholar 

  82. Bertilsson S, Allard B (1996) Sequential photochemical and microbial degradation of refractory dissolved organic matter in a humic freshwater system. Adv Limnol 48:133–141

    CAS  Google Scholar 

  83. Moran MA, Sheldon WM, Zepp RG (2000) Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol Oceanogr 45:1254–1264. doi:10.4319/lo.2000.45.6.1254

    Article  CAS  Google Scholar 

  84. Hansen AM, Kraus TEC, Pellerin BA, Fleck JA, Downing BD, Bergamaschi BA (2016) Optical properties of dissolved organic matter (DOM): effects of biological and photolytic degradation. Limnol Oceanogr:1015–1032. doi:10.1002/lno.10270

  85. von Wachenfeldt E, Tranvik LJ (2008) Sedimentation in boreal lakes—the role of flocculation of allochthonous dissolved organic matter in the water column. Ecosystems 11:803–814

    Article  CAS  Google Scholar 

  86. von Wachenfeldt E, Bastviken D, Tranvika LJ (2009) Microbially induced flocculation of allochthonous dissolved organic carbon in lakes. Limnol Oceanogr 54:1811–1818

    Article  Google Scholar 

  87. Obernosterer I, Herndl GJ (1995) Phytoplankton extracellular release and bacterial growth: dependence on the inorganic N: P ratio. Mar Ecol Prog Ser 116:247–257

    Article  Google Scholar 

  88. Sundh I (1992) Biochemical composition of dissolved organic carbon derived from phytoplankton and used by heterotrophic bacteria. Appl Environ Microbiol 58:2938–2947

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kellerman AM, Kothawala DN, Dittmar T, Tranvik LJ (2015) Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nat Geosci 8:454–457

    Article  CAS  Google Scholar 

  90. Geller A (1985) Degradation and formation of refractory DOM by bacteria during simultaneous growth on labile substrates and persistent lake water constituents. Schweiz Z Hydrol 47:27–44

    Article  CAS  Google Scholar 

  91. Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo T, Chen F (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8:593–599

    Article  CAS  PubMed  Google Scholar 

  92. Lechtenfeld OJ, Hertkorn N, Shen Y, Witt M, Benner R (2015) Marine sequestration of carbon in bacterial metabolites. Nat Commun 6:6711

    Article  CAS  PubMed  Google Scholar 

  93. Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R (2001) Production of refractory dissolved organic matter by bacteria. Science 292:917–920

    Article  CAS  PubMed  Google Scholar 

  94. Sleighter RL, Hatcher PG (2007) The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter. J Mass Spectrom 42:559–574

    Article  CAS  PubMed  Google Scholar 

  95. Osborne DM, Podgorski DC, Bronk DA, Roberts Q, Sipler RE, Austin D, Bays JS, Cooper WT (2013) Molecular-level characterization of reactive and refractory dissolved natural organic nitrogen compounds by atmospheric pressure photoionization coupled to Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun Mass Spectrom 27:851–858

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank U. Kiwel, U. Link, I. Locker, Y. Rosenlöcher, E. Ruschak, and F. Zander for their help in the lab and field, and I. Siebert for the carbon concentration analyses. F. Loos helped in counting bacteria samples, and H. Rönicke assisted in the determination of phytoplankton species. We also thank O. Lechtenfeld for valuable discussions and helpful comments on the manuscript. We gratefully acknowledge Boris Koch for developing and providing the FT-ICR MS molecular formula calculation software and the data evaluation pipeline used in this study. We would like to thank the members of the Leibniz Laboratory for Radiometric Dating and Isotope Research, Kiel (Germany). We are grateful to two anonymous reviewers for their comments which improved the manuscript.

This work was funded by the German Federal Ministry of Education and Research (grant number 02WT1290A). FT-ICR MS analyses were performed at the Centre for Chemical Microscopy (ProVIS) at the Helmholtz Centre for Environmental Research which is supported by European Regional Development Funds (EFRE—Europe funds Saxony) and the Helmholtz Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karoline Morling.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morling, K., Raeke, J., Kamjunke, N. et al. Tracing Aquatic Priming Effect During Microbial Decomposition of Terrestrial Dissolved Organic Carbon in Chemostat Experiments. Microb Ecol 74, 534–549 (2017). https://doi.org/10.1007/s00248-017-0976-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0976-0

Keywords

Navigation