Skip to main content

Advertisement

Log in

Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Plasma is ionized gas, which is found in various forms in nature and can also be generated artificially. A variety of cold atmospheric-pressure plasmas are currently being investigated for their clinical utility, and first studies reporting on the treatment of patients showed that plasma treatment may support the wound healing process. One of the benefits of plasma treatment is the effective inactivation of bacteria including tenacious pathogens such as Pseudomonas aeruginosa or multiresistant Staphylococcus aureus (MRSA). Neither the molecular mechanisms promoting wound healing nor those underlying bacterial inactivation are fully understood yet. The review has a focus on plasma jets, a particular type of cold atmospheric-pressure plasma sources featuring an indirect treatment whereby the treated substrates do not come into contact with the plasma directly but are exposed to the plasma-emitted reactive species and photons. Such plasma jets are being employed as tools in basic research regarding the effects of plasmas on biological samples. This review provides a brief overview on the recent clinical investigations into the benefits of cold atmospheric-pressure plasmas. It then describes our current understanding of the mechanisms leading to bacterial inactivation and inactivation of biomacromolecules gained by employing plasma jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alberts B (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Alkawareek MY, Algwari QT, Laverty G, Gorman SP, Graham WG, O'Connell D, Gilmore BF, Vadivelu J (2012) Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma. PLoS ONE 7:e44289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arjunan KP, Friedman G, Fridman A, Clyne AM (2012) Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species. J R Soc Interface 9:147–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arndt S, Unger P, Wacker E, Shimizu T, Heinlin J, Li YF, Thomas HM, Morfill GE, Zimmermann JL, Bosserhoff AK, Karrer S (2013) Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS ONE 8:e79325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becker KH (2005) Non-equilibrium air plasmas at atmospheric pressure. Institute of Physics Publishing, Bristol

    Google Scholar 

  • Bekeschus S, Masur K, Kolata J, Wende K, Schmidt A, Bundscherer L, Barton A, Kramer A, Bröker B, Weltmann K (2013) Human mononuclear cell survival and proliferation is modulated by cold atmospheric plasma jet. Plasma Process Polym 10:706–713

    Article  CAS  Google Scholar 

  • Brehmer F, Haenssle HA, Daeschlein G, Ahmed R, Pfeiffer S, Görlitz A, Simon D, Schön MP, Wandke D, Emmert S (2014) Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm® VU-2010): results of a monocentric, two-armed, open, prospective, randomized, and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol (in press)

  • Brullé L, Vandamme M, Riès D, Martel E, Robert E, Lerondel S, Trichet V, Richard S, Pouvesle J, Le Pape A (2012) Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model. PLoS ONE 7:e52653

    Article  PubMed Central  PubMed  Google Scholar 

  • Daeschlein G, von Woedtke T, Kindel E, Brandenburg R, Weltmann K, Jünger M (2010) Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Process Polym 7:224–230

    Article  CAS  Google Scholar 

  • Deng X, Shi J, Kong M (2006) Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Trans Plasma Sci 34:1310–1316

    Article  Google Scholar 

  • Deng XT, Shi JJ, Chen HL, Kong MG (2007) Protein destruction by a helium atmospheric pressure glow discharge: capability and mechanisms. Appl Phys Lett 90:13903

    Article  Google Scholar 

  • Dobrynin D, Wu A, Kalghatgi S, Park S, Shainsky N, Wasko K, Dumani E, Ownbey R, Joshi S, Sensenig R, Brooks AD (2011) Live pig skin tissue and wound toxicity of cold plasma treatment. Plasma Med 1:93–108

    Article  Google Scholar 

  • Elmoualij B, Thellin O, Gofflot S, Heinen E, Levif P, Séguin J, Leduc A, Barbeau J, Zorzi W (2012) Decontamination of prions by the flowing afterglow of a reduced-pressure N2-O2 cold-plasma. Plasma Process Polym 9:612–618

    Article  CAS  Google Scholar 

  • Emmert S, Brehmer F, Hänßle H, Helmke A, Mertens N, Ahmed R, Simon D, Wandke D, Maus-Friedrichs W, Däschlein G, Schön MP, Viöl W (2013) Atmospheric pressure plasma in dermatology: ulcus treatment and much more. Clin Plasma Med 1:24–29

    Article  Google Scholar 

  • Fang M, Jin L, Zhang C, Tan Y, Jiang P, Ge N, Li H, Xing X, Sturtevant J (2013) Rapid mutation of Spirulina platensis by a new mutagenesis system of atmospheric and room temperature plasmas (ARTP) and generation of a mutant library with diverse phenotypes. PLoS ONE 8:e77046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fridman AA (2012) Plasma chemistry, reprint edition. Cambridge University Press, Cambridge

    Google Scholar 

  • Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G (2007) Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chem Plasma Process 27:163–176

    Article  CAS  Google Scholar 

  • Gaunt L, Beggs C, Georghiou G (2006) Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Trans Plasma Sci 34:1257–1269

    Article  CAS  Google Scholar 

  • Greenberg JT, Monach P, Chou JH, Josephy PD, Demple B (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci U S A 87:6181–6185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guénadou D, Lorcet H, Peybernès J, Catoire L, Osmont A, Gökalp I (2012) Plasma thermal conversion of bio-oil for hydrogen production. Int J Energy Res 36:409–414

    Article  Google Scholar 

  • Heinlin J, Morfill G, Landthaler M, Stolz W, Isbary G, Zimmermann JL, Shimizu T, Karrer S (2010) Plasma medicine: possible applications in dermatology. J Dtsch Dermatol Ges 8:968–976

    PubMed  Google Scholar 

  • Helmke A, Hoffmeister D, Mertens N, Emmert S, Schuette J, Vioel W (2009) The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air. New J Phys 11:115–125

    Article  Google Scholar 

  • Isbary G, Morfill G, Zimmermann J, Shimizu T, Stolz W (2011) Cold atmospheric plasma: a successful treatment of lesions in Hailey–Hailey disease. Arch Dermatol 147:388–390

    Article  PubMed  Google Scholar 

  • Isbary G, Heinlin J, Shimizu T, Zimmermann JL, Morfill G, Schmidt H, Monetti R, Steffes B, Bunk W, Li Y, Klaempfl T, Karrer S, Landthaler M, Stolz W (2012) Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol 167:404–410

    Article  CAS  PubMed  Google Scholar 

  • Janzen G (1992) Plasmatechnik. Grundlagen, Anwendungen, Diagnostik. Hüthig Buch Verlag, Heidelberg

    Google Scholar 

  • Kalghatgi SU, Fridman A, Friedman G, Clyne AM (2009) Cell proliferation following non-thermal plasma is related to reactive oxygen species induced fibroblast growth factor-2 release. Conf Proc IEEE Eng Med Biol Soc 2009:6030–6033

    PubMed  Google Scholar 

  • Kalghatgi S, Kelly CM, Cerchar E, Torabi B, Alekseev O, Fridman A, Friedman G, Azizkhan-Clifford J (2011) Effects of non-thermal plasma on mammalian cells. PLoS ONE 6:e16270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalghatgi S, Fridman A, Azizkhan-Clifford J, Friedman G (2012) DNA damage in mammalian cells by non-thermal atmospheric pressure microsecond pulsed dielectric barrier discharge plasma is not mediated by ozone. Plasma Process Polym 9:726–732

    Article  CAS  Google Scholar 

  • Keller S, Bibinov N, Neugebauer A, Awakowicz P (2013) Electrical and spectroscopic characterization of a surgical argon plasma discharge. J Phys D Appl Phys 46:25402

    Article  Google Scholar 

  • Kieft I, Kurdi M, Stoffels E (2006) Reattachment and apoptosis after plasma-needle treatment of cultured cells. IEEE Trans Plasma Sci 34:1331–1336

    Article  CAS  Google Scholar 

  • Klämpfl TG, Isbary G, Shimizu T, Li Y, Zimmermann JL, Stolz W, Schlegel J, Morfill GE, Schmidt H (2012) Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol 78:5077–5082

    Article  PubMed Central  PubMed  Google Scholar 

  • Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J, Zimmermann JL (2009) Plasma medicine: an introductory review. New J Phys 11:115012

    Article  Google Scholar 

  • Lackmann J, Schneider S, Narberhaus F, Benedikt J, Bandow JE (2012) Characterization of damage to bacteria and bio-macromolecules caused by (V)UV radiation and particles generated by a microscale atmospheric pressure plasma jet. In: Machala Z, Hensel K, Akishev Y (eds) Plasma for bio-decontamination, medicine and food security. Springer Netherlands, Dordrecht, pp 17–29

    Chapter  Google Scholar 

  • Lackmann J, Schneider S, Edengeiser E, Jarzina F, Brinckmann S, Steinborn E, Havenith M, Benedikt J, Bandow JE (2013) Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J R Soc Interface 10:20130591

    Article  PubMed  Google Scholar 

  • Langmuir I (1928) Oscillations in ionized gases. Proc Natl Acad Sci U S A 14:627–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process Polym 2:391–400

    Article  CAS  Google Scholar 

  • Laroussi M, Leipold F (2004) Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int J Mass Spec 233:81–86

    Article  CAS  Google Scholar 

  • Leduc M, Guay D, Coulombe S, Leask RL (2010) Effects of non-thermal plasmas on DNA and mammalian cells. Plasma Process Polym 7:899–909

    Article  CAS  Google Scholar 

  • Lee K, Joo Park B, Hee Lee D, Lee I, Hyun SO, Chung K, Park J (2005) Sterilization of Escherichia coli and MRSA using microwave-induced argon plasma at atmospheric pressure. Surf Coat Technol 193:35–38

    Article  CAS  Google Scholar 

  • Lerouge S, Wertheimer M, Yahia L (2001) Plasma sterilization: a review of parameters, mechanisms, and limitations. Plasmas Polym 6:175–188

    Article  CAS  Google Scholar 

  • Li Z, Demple B (1994) SoxS, an activator of superoxide stress genes in Escherichia coli. Purification and interaction with DNA. J Biol Chem 269:18371–18377

    CAS  PubMed  Google Scholar 

  • Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing, 2nd edn. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  • Liebmann J, Scherer J, Bibinov N, Rajasekaran P, Kovacs R, Gesche R, Awakowicz P, Kolb-Bachofen V (2011) Biological effects of nitric oxide generated by an atmospheric pressure gas-plasma on human skin cells. Nitric Oxide 24:8–16

    Article  CAS  PubMed  Google Scholar 

  • Locke BR, Shih K (2011) Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Sci Technol 20:34006

    Article  Google Scholar 

  • Lyman T (1914) Victor Schumann. Astrophys J 39:1

    Article  Google Scholar 

  • Maisch T, Shimizu T, Mitra A, Heinlin J, Karrer S, Li Y, Morfill G, Zimmermann JL (2012) Contact-free cold atmospheric plasma treatment of Deinococcus radiodurans. J Ind Microbiol Biotechnol 39:1367–1375

    Article  CAS  PubMed  Google Scholar 

  • Marschewski M, Hirschberg J, Omairi T, Höfft O, Viöl W, Emmert S, Maus-Friedrichs W (2012) Electron spectroscopic analysis of the human lipid skin barrier: cold atmospheric plasma-induced changes in lipid composition. Exp Dermatol 21:921–925

    Article  CAS  PubMed  Google Scholar 

  • Noriega E, Shama G, Laca A, Díaz M, Kong MG (2011) Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiol 28:1293–1300

    Article  CAS  PubMed  Google Scholar 

  • O’Connell D, Cox LJ, Hyland WB, McMahon SJ, Reuter S, Graham WG, Gans T, Currell FJ (2011) Cold atmospheric pressure plasma jet interactions with plasmid DNA. Appl Phys Lett 98:43701

    Article  Google Scholar 

  • Oehmigen K, Hähnel M, Brandenburg R, Wilke C, Weltmann K, von Woedtke T (2010) The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Process Polym 7:250–257

    Article  CAS  Google Scholar 

  • Oehmigen K, Winter J, Hähnel M, Wilke C, Brandenburg R, Weltmann K, von Woedtke T (2011) Estimation of possible mechanisms of Escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Process Polym 8:904–913

    Article  CAS  Google Scholar 

  • Park DP, Davis K, Gilani S, Alonzo C, Dobrynin D, Friedman G, Fridman A, Rabinovich A, Fridman G (2013) Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield. Curr Appl Phys 13:S19

    Article  Google Scholar 

  • Partecke LI, Evert K, Haugk J, Doering F, Normann L, Diedrich S, Weiss F, Evert M, Huebner NO, Guenther C, Heidecke CD, Kramer A, Bussiahn R, Weltmann K, Pati O, Bender C, von Bernstorff W (2012) Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer 12:473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perni S, Shama G, Hobman JL, Lund PA, Kershaw CJ, Hidalgo-Arroyo GA, Penn CW, Deng XT, Walsh JL, Kong MG (2007) Probing bactericidal mechanisms induced by cold atmospheric plasmas with Escherichia coli mutants. Appl Phys Lett 90:73902

    Article  Google Scholar 

  • Perni S, Liu DW, Shama G, Kong MG (2008) Cold atmospheric plasma decontamination of the pericarps of fruit. J Food Prot 71:302–308

    CAS  PubMed  Google Scholar 

  • Ptasińska S, Bahnev B, Stypczyńska A, Bowden M, Mason NJ, Braithwaite, Nicholas SJ (2010) DNA strand scission induced by a non-thermal atmospheric pressure plasma jet. Phys Chem Chem Phys 12:7779–7781

    Article  PubMed  Google Scholar 

  • Quoc An HT, Pham Huu T, Le Van T, Cormier J, Khacef A (2011) Application of atmospheric non thermal plasma-catalysis hybrid system for air pollution control: Toluene removal. Catal Today 176:474–477

    Article  CAS  Google Scholar 

  • Radman M (1974) Phenomenology of an inducible mutagenic DNA repair pathway in Escherichia coli: SOS repair hypothesis. In: Sherman S, Miller M, Lawrence C, Tabor WH (eds) Molecular and environmental aspects of mutagenesis. Charcles C Thomas publisher, Springfield, pp 128–142

    Google Scholar 

  • Schneider LA, Lorber A, Grabbe S, Dissemond J (2007) Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res 298:413–420

    Article  PubMed  Google Scholar 

  • Schneider S, Lackmann J, Narberhaus F, Bandow JE, Denis B, Benedikt J (2011) Separation of VUV/UV photons and reactive particles in the effluent of a He/O2 atmospheric pressure plasma jet. J Phys D Appl Phys 44:295201

    Article  Google Scholar 

  • Schneider S, Lackmann J, Ellerweg D, Denis B, Narberhaus F, Bandow JE, Benedikt J (2012) The role of VUV radiation in the inactivation of bacteria with an atmospheric pressure plasma jet. Plasma Process Polym 9:561–568

    Article  CAS  Google Scholar 

  • Sharma A, Collins G, Pruden A (2009) Differential gene expression in Escherichia coli following exposure to nonthermal atmospheric pressure plasma. J Appl Microbiol 107:1440–1449

    Article  CAS  PubMed  Google Scholar 

  • Sousa JS, Girard P, Sage E, Ravanat J, Puech V (2012) DNA oxidation by reactive oxygen species produced by atmospheric pressure microplasmas. In: Machala Z, Hensel K, Akishev Y (eds) Plasma for bio-decontamination, medicine and food security. Springer Netherlands, Dordrecht, pp 107–119

    Chapter  Google Scholar 

  • Stoffels E, Roks AJM, Deelman LE (2008a) Delayed effects of cold atmospheric plasma on vascular cells. Plasma Process Polym 5:599–605

    Article  CAS  Google Scholar 

  • Stoffels E, Sakiyama Y, Graves DB (2008b) Cold atmospheric plasma: charged species and their interactions with cells and tissues. IEEE Trans Plasma Sci 36:1441–1457

    Article  CAS  Google Scholar 

  • Takai E, Kitano K, Kuwabara J, Shiraki K (2012) Protein inactivation by low-temperature atmospheric pressure plasma in aqueous solution. Plasma Process Polym 9:77–82

    Article  CAS  Google Scholar 

  • Tanaka S, Horinouchi T, Abe S, Matsuno Y, Sasaki T, Kikuchi T, Harada N (2013) Inactivation property of microorganisms in water irradiated by atmospheric-pressure plasma using dielectric barrier discharge. IEEJ Trans Electr Electron Eng 8:105–110

    Article  CAS  Google Scholar 

  • Tresp H, Hammer MU, Winter J, Weltmann K, Reuter S (2013) Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy. J Phys D Appl Phys 46:435401

    Article  Google Scholar 

  • Trompeter F, Neff W, Franken O, Heise M, Neiger M, Liu S, Pietsch G, Saveljew A (2002) Reduction of Bacillus subtilis and Aspergillus niger spores using nonthermal atmospheric gas discharges. IEEE Trans Plasma Sci 30:1416–1423

    Article  Google Scholar 

  • van Gils CAJ, Hofmann S, Boekema BKHL, Brandenburg R, Bruggeman PJ (2013) Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. J Phys D Appl Phys 46:175203

    Article  Google Scholar 

  • Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, Dozias S, Sobilo J, Gosset D, Kieda C, Legrain B, Pouvesle J, Le Pape A (2012) ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer 130:2185–2194

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Huang Z, Li G, Zhao H, Xing X, Sun W, Li H, Gou Z, Bao C (2010) Novel mutation breeding method for Streptomyces avermitilis using an atmospheric pressure glow discharge plasma. J Appl Microbiol 108:851–858

    Article  CAS  PubMed  Google Scholar 

  • Winter T, Winter J, Polak M, Kusch K, Mäder U, Sietmann R, Ehlbeck J, van Hijum S, Weltmann K, Hecker M, Kusch H (2011) Characterization of the global impact of low temperature gas plasma on vegetative microorganisms. Proteomics 11:3518–3530

    Article  CAS  PubMed  Google Scholar 

  • Winter T, Bernhardt J, Winter J, Mäder U, Schlüter R, Weltmann K, Hecker M, Kusch H (2013) Common versus noble: Bacillus subtilis differentially responds to air and argon gas plasma. Proteomics 13:2608–2621

    Article  CAS  PubMed  Google Scholar 

  • Woedtke T, Oehmigen K, Brandenburg R, Hoder T, Wilke C, Hähnel M, Weltmann K (2012) Plasma-liquid interactions: chemistry and antimicrobial effects. In: Machala Z, Hensel K, Akishev Y (eds) Plasma for bio-decontamination, medicine and food security. Springer Netherlands, Dordrecht, pp 67–78

    Chapter  Google Scholar 

  • Wolf RA (2012) Atmospheric pressure plasma for surface modification. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Wu H, Sun P, Feng H, Zhou H, Wang R, Liang Y, Lu J, Zhu W, Zhang J, Fang J (2012) Reactive oxygen species in a non-thermal plasma microjet and water system: generation, conversion, and contributions to bacteria inactivation—an analysis by electron spin resonance spectroscopy. Plasma Process Polym 9:417–424

    Article  CAS  Google Scholar 

  • Yasuda H, Miura T, Kurita H, Takashima K, Mizuno A (2010) Biological evaluation of DNA damage in bacteriophages inactivated by atmospheric pressure cold plasma. Plasma Process Polym 7:301–308

    Article  CAS  Google Scholar 

  • Zimmermann JL, Dumler K, Shimizu T, Morfill GE, Wolf A, Boxhammer V, Schlegel J, Gansbacher B, Anton M (2011) Effects of cold atmospheric plasmas on adenoviruses in solution. J Phys D Appl Phys 44:505201

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) grant PAK728 to JEB (BA 4193/3-1) and a scholarship of the Ruhr University Bochum Research School granted to JWL.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Elisabeth Bandow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lackmann, JW., Bandow, J.E. Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets. Appl Microbiol Biotechnol 98, 6205–6213 (2014). https://doi.org/10.1007/s00253-014-5781-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5781-9

Keywords

Navigation