Skip to main content
Log in

The peculiar distribution of class I and class II aldolases in diatoms and in red algae

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Diatom plastids probably evolved by secondary endocytobiosis from a red alga that was up by a eukaryotic host cell. Apparently, this process increased the complexity of the intracellular distribution of metabolic enzymes. We identified genes encoding fructose-bisphosphate aldolases (FBA) in two centric (Odontella sinensis, Thalassiosira pseudonana) and one pennate (Phaeodactylum tricornutum) diatoms and found that four different aldolases are present in both groups: two plastid targeted class II enzymes (FBAC1 and FBAC2), one cytosolic class II (FBA3) and one cytosolic class I (FBA4) enzyme. The pennate Phaeodactylum possesses an additional plastidic class I enzyme (FBAC5). We verified the classification of the different aldolases in the diatoms by enzymatic characterization of isolated plastids and whole cell extracts. Interestingly, our results imply that in plastids of centric and pennate diatoms mainly either class I or class II aldolases are active. We also identified genes for both class I and class II aldolases in red algal EST databases, thus presenting a fascinating example of the reutilization and recompartmentalization of different aldolase isoenzymes during secondary endocytobiosis but as well demonstrating the limited use of metabolic enzymes as markers for the interpretation of phylogenetic histories in algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antia NJ (1967) Comparative studies on aldolase activity in marine planktonic algae, and their evolutionary significance. J Phycol 3:91–85

    Article  Google Scholar 

  • Apt KE, Zaslavkaia L, Lippmeier JC, Lang M, Kilian O, Wetherbee R, Grossman AR, Kroth PG (2002) In vivo characterization of diatom multipartite plastid targeting signals. J Cell Sci 115:4061–4069

    Article  PubMed  CAS  Google Scholar 

  • Armbrust et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86

    Article  PubMed  CAS  Google Scholar 

  • Bhaya D, Grossman A (1991) Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum. Mol Gen Genet 229:400–404

    Article  PubMed  CAS  Google Scholar 

  • Blom N, Sygusch J (1997) Product binding and role of the C-terminal region in class I D-fructose 1,6-bisphosphate aldolase. Nat Struct Biol 4:36–39

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimeras (meta-algae). Philos Trans R Soc Lond B Biol Sci 359:109–134

    Article  CAS  Google Scholar 

  • Delwiche CF, Palmer JD (1997) The origin of plastids and their spread via secondary endosymbiosis. Plant Syst Evol 11:53–86

    CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G ((1999)) “ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites”. Protein Sci 8.5:978–984

    Google Scholar 

  • Flechner A, Gross W, Martin WF, Schnarrenberger C (1999) Chloroplast class I and class II aldolases are bifunctional for fructose-1,6-biphosphate and sedoheptulose-1,7-biphosphate cleavage in the Calvin cycle. FEBS Lett 447:200–202

    Article  PubMed  CAS  Google Scholar 

  • Gross W, Bayer MG, Schnarrenberger C, Gebhart UB, Maier TL, Schenk H (1994) Two distinct aldolases of class II type in the cyanoplasts and in the cytosol of the alga Cyanophora paradoxa. Plant Physiol 105:1393–1398

    PubMed  CAS  Google Scholar 

  • Gross W, Lenze D, Nowitzki U, Weiske J, Schnarrenberger C (1999) Characterization, cloning, and evolutionary history of the chloroplast and cytosolic class I aldolases of the red alga Galdieria sulphuraria. Gene 230:7–14

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Henze K, Morrison HG, Sogin ML, Müller M (1998) Sequence and phylogenetic position of a class II aldolase gene in the amitochondriate protist, Giardia lamblia. Gene 222:163–168

    Article  PubMed  CAS  Google Scholar 

  • Kilian O, Kroth PG (2004) Presequence acquisition during secondary endocytobiosis and the possible role of introns. J Mol Evol 58:712–721

    Article  PubMed  CAS  Google Scholar 

  • Kilian O, Kroth PG (2005) Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J 41:175–183

    Article  PubMed  CAS  Google Scholar 

  • Kowallik KV (2003) Diatoms: a complex evolutionary history becomes even more complex. J Phycol 39:1–3

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings Bioinformat 5:150–163

    Article  CAS  Google Scholar 

  • Kroth PG (2002) Protein transport into secondary plastids and the evolution of primary and secondary plastids. Int Rev Cytol 221:191–255

    Article  PubMed  CAS  Google Scholar 

  • Lang M, Apt KE, Kroth PG (1998) Protein transport into “complex” diatom plastids utilizes two different targeting signals. J Biol Chem 273:30973–30978

    Article  PubMed  CAS  Google Scholar 

  • Maheswari U, Montsant A, Goll J, Krishnasamy S, Rajyashri KR, Patell VM, Bowler C (2005) The diatom EST database. Nucleic Acids Res 33:D344–D347

    Article  PubMed  Google Scholar 

  • Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: How much, what happens, and why? Plant Physiol 118(1998):9–17

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Mustafa AZ, Henze K, Schnarrenberger C (1996) Higher-plant chloroplast and cytosolic fructose-1,6-bisphosphatase isoenzymes: origins via duplication rather than prokaryote-eukaryote divergence. Plant Mol Biol 32:485–491

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Scheibe R, Schnarrenberger C (2000) The Calvin cycle and its regulation. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Advances in photosynthesis, vol 9. Photosynthesis: physiology and metabolism. Kluwer Academic Publishers, Dordrecht, pp 9–51

  • Marsh JJ, Lebherz HG (1992) Fructose-bisphosphate aldolases: an evolutionary history. Trends Biochem Sci 17:110–113

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki M et al. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  PubMed  CAS  Google Scholar 

  • McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:951–959

    Article  Google Scholar 

  • Montsant A, Jabbari K, Maheswari U, Bowler C (2005) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol 137:500–513

    Article  PubMed  Google Scholar 

  • Moreira D, Le Guyader H, Philippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405:69–72

    Article  PubMed  CAS  Google Scholar 

  • Mutoh N, Hayashi Y (1994) Molecular cloning and nucleotide sequencing of Schizosaccharomyces pombe homologue of the class II fructose-1,6-bisphosphate aldolase gene. Biochim Biophys Acta 1183:550–552

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Brunak S, von Heijne G (1999) Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng 12:3–9

    Article  PubMed  CAS  Google Scholar 

  • Nikaido I, Asamizu E, Nakajima M, Nakamura Y, Saga N, Tabata S (2000) Generation of 10,154 expressed sequence tags from a leafy gametophyte of a marine red alga, Porphyra yezoensis. DNA Res 7:223–227

    Article  PubMed  Google Scholar 

  • Nisbet RE, Kilian O, McFadden GI (2005) Diatom genomics: genetic acquisitions and mergers. Curr Biol 14:R1048–R1050

    Article  CAS  Google Scholar 

  • Palmer JD (1993) A genetic rainbow of plastids. Nature 364:762–763

    Article  Google Scholar 

  • Palmer JD (2003) The symbiotic birth and spread of plastids: how many times and whodunnit? J Phycol 39:4–11

    Article  CAS  Google Scholar 

  • Patron NJ, Rogers MB, Keeling PJ (2004) Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates. Euk Cell 3:1169–1175

    Article  CAS  Google Scholar 

  • Pancic P, Strotmann H (1990) Characterization of CF1 from the diatom Odontella sinensis. Bot Acta 103:274–280

    CAS  Google Scholar 

  • Pancic PG, Strotmann H (1993) Structure of the nuclear encoded γ subunit of CF0CF1 of the diatom Odontella sinensis including its presequence. FEBS Lett 320:61–66

    Article  PubMed  CAS  Google Scholar 

  • Pelzer-Reith B, Freund S, Schnarrenberger C, Yatsuki H, Hori K (1995) The plastid aldolase gene from Chlamydomonas reinhardtii: intron/exon organization, evolution, and promoter structure. Mol Gen Genet 248:481–486

    Article  PubMed  CAS  Google Scholar 

  • Pelzer-Reith B, Penger A, Schnarrenberger C (1993) Plant aldolase: cDNA and deduced amino-acid sequences of the chloroplast and cytosol enzyme from spinach. Plant Mol Biol 21:331–340

    Article  PubMed  CAS  Google Scholar 

  • Plaumann M, Pelzer-Reith B, Martin WF, Schnarrenberger C (1997) Multiple recruitment of class-I aldolase to chloroplasts and eubacterial origin of eubacterial eukaryotic class-II aldolases revealed by cDNAs from Euglena gracilis. Curr Genet 31:430–438

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Ezpeleta N, Brinkmann H, Burey S, Roure B, Burger G, Löffelhardt W, Bohnert H, Philippe H, Lang B (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Rutter WJ (1964) Evolution of aldolases. Fed Proc 23:1248–1257

    PubMed  CAS  Google Scholar 

  • Schmid A-MM (2003) Endobacteria in the diatom Pinnularia (Bacillariophyceae). I. “Scattered ct-nucleoids” explained: DAPI-DNA complexes stem from exoplastidial bacteria boring into the chloroplasts. J Phycol 39:122–138

    Article  Google Scholar 

  • Schnarrenberger C, Pelzer-Reith B, Yatsuki H, Freund S, Jacobshagen S, Hori K (1994) Expression and sequence of the only detectable aldolase in Chlamydomonas reinhardtii. Arch Biochem Biophys 313:173–178

    Article  PubMed  CAS  Google Scholar 

  • Siebers B, Brinkmann H, Dorr C, Tjaden B, Lilie H, van der Oost J, Verhees CH (2001) Archaeal fructose-1,6-bisphosphate aldolases constitute a new family of archaeal type class I aldolase. J Biol Chem 276:28710–28718

    Article  PubMed  CAS  Google Scholar 

  • Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150:25–32

    Article  PubMed  CAS  Google Scholar 

  • Starr RC, Zeikus JA (1993) UTEX-The culture collection of algae at the University of Texas at Austin. J Phycol 29(Suppl):93

    Article  Google Scholar 

  • Stiller JW, Reel DC, Johnson JC (2003) A single origin of plastids revisited: convergent evolution in organellar genome content. J Phycol 39:95–105

    Article  CAS  Google Scholar 

  • Tolstrup N, P Rouze, Brunak S (1997) A branch point consensus from Arabidopsis found by non-circular analysis allows for better prediction of acceptor sites. Nucleic Acids Res 25:3159–3163

    Article  PubMed  CAS  Google Scholar 

  • Treguer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A, Queguiner B (1995) The silica balance in the world ocean - a reestimate. Science 268:375–379

    Article  PubMed  CAS  Google Scholar 

  • Waller RF, Reed MB, Cowman AF, McFadden GI (2000) Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J 19:1794–1802

    Article  PubMed  CAS  Google Scholar 

  • Witke C, Götz F (1993) Cloning, sequencing, and characterization of the gene encoding the class I fructose-1,6-bisphosphate aldolase of Staphylococcus carnosus. J Bacteriol 175:7495–7499

    PubMed  CAS  Google Scholar 

  • Wittpoth C, Kroth PG, Weyrauch K, Kowallik KV, Strotmann H (1998) Functional characterization of isolated plastids from two marine diatoms. Planta 206:79–85

    Article  CAS  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE (2000) Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 36:379–386

    Article  CAS  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE (2001) Trophic obligate conversion of an photoautotrophic organism through metabolic engineering. Science 292:2073–2075

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support by the University of Konstanz and for grants of the Deutsche Forschungsgemeinschaft (DFG, project Kr 1661/3-1) and the European community (MARGENES, contract QLRT-2001-01226) to PGK. We thank BASF Plant Science GmbH (Ludwigshafen, Germany) for participating in an EST sequencing program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Kroth.

Additional information

Communicated by R. Bock

The nucleotide sequences have been deposited at Genbank under the accession numbers AY116588, AY191866 and AY212505

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroth, P.G., Schroers, Y. & Kilian, O. The peculiar distribution of class I and class II aldolases in diatoms and in red algae. Curr Genet 48, 389–400 (2005). https://doi.org/10.1007/s00294-005-0033-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-005-0033-2

Keywords

Navigation