Skip to main content

Advertisement

Log in

Knockdown of BAG3 sensitizes bladder cancer cells to treatment with the BH3 mimetic ABT-737

  • Original Article
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Purpose

BAG3 is overexpressed in several malignancies and mediates a non-canonical, selective form of (macro)autophagy. By stabilizing pro-survival Bcl-2 proteins in complex with HSP70, BAG3 can also exert an apoptosis-antagonizing function. ABT-737 is a high affinity Bcl-2 inhibitor that fails to target Mcl-1. This failure may confer resistance in various cancers.

Methods

Urothelial cancer cells were treated with the BH3 mimetics ABT-737 and (−)-gossypol, a pan-Bcl-2 inhibitor which inhibits also Mcl-1. To clarify the importance of the core autophagy regulator ATG5 and BAG3 in ABT-737 treatment, cell lines carrying a stable lentiviral knockdown of ATG5 and BAG3 were created. The synergistic effect of ABT-737 and pharmaceutical inhibition of BAG3 with the HSF1 inhibitor KRIBB11 or sorafenib was also evaluated. Total cell death and apoptosis were quantified by FACS analysis of propidium iodide, annexin. Target protein analysis was conducted by Western blotting.

Results

Knockdown of BAG3 significantly downregulated Mcl-1 protein levels and sensitized urothelial cancer cells to apoptotic cell death induced by ABT-737, while inhibition of bulk autophagy through depletion of ATG5 had no discernible effect on cell death. Similar to knockdown of BAG3, pharmacological targeting of the BAG3/Mcl-1 pathway with KRIBB11 was capable to sensitize both cell lines to treatment with ABT-737.

Conclusion

Our results show that BAG3, but not bulk autophagy has a major role in the response of bladder cancer cells to BH3 mimetics. They also suggest that BAG3 is a suitable target for combined therapies aimed at synergistically inducing apoptosis in bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CMA:

Chaperone-mediated autophagy

ATG:

Autophagy-related genes

z-VAD:

Z-Val-Ala-DL-Asp(OMe)-fluoromethylketone

STS:

Staurosporine

PI:

Propidium iodide

References

  1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  2. Karam JA, Lotan Y, Karakiewicz PI, Ashfaq R, Sagalowsky AI, Roehrborn CG, Shariat SF (2007) Use of combined apoptosis biomarkers for prediction of bladder cancer recurrence and mortality after radical cystectomy. Lancet Oncol 8(2):128–136. doi:10.1016/S1470-2045(07)70002-5

    Article  CAS  PubMed  Google Scholar 

  3. Ni Chonghaile T, Letai A (2008) Mimicking the BH3 domain to kill cancer cells. Oncogene 27(Suppl 1):S149–S157. doi:10.1038/onc.2009.52

    Article  PubMed  Google Scholar 

  4. Lessene G, Czabotar PE, Colman PM (2008) BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov 7(12):989–1000. doi:10.1038/nrd2658

    Article  CAS  PubMed  Google Scholar 

  5. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681. doi:10.1038/nature03579

    Article  CAS  PubMed  Google Scholar 

  6. Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15(4):1126–1132. doi:10.1158/1078-0432.CCR-08-0144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075. doi:10.1038/nature06639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Dice JF (2007) Chaperone-mediated autophagy. Autophagy 3(4):295–299

    Article  CAS  PubMed  Google Scholar 

  9. Voss V, Senft C, Lang V, Ronellenfitsch MW, Steinbach JP, Seifert V, Kogel D (2010) The pan-Bcl-2 inhibitor (−)-gossypol triggers autophagic cell death in malignant glioma. Mol Cancer Res 8(7):1002–1016. doi:10.1158/1541-7786.MCR-09-0562

    Article  CAS  PubMed  Google Scholar 

  10. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395(6700):395–398. doi:10.1038/26506

    Article  CAS  PubMed  Google Scholar 

  11. Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C (2009) Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 28(7):889–901. doi:10.1038/emboj.2009.29

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Liu S, Kulp SK, Sugimoto Y, Jiang J, Chang HL, Dowd MK, Wan P, Lin YC (2002) The (−)-enantiomer of gossypol possesses higher anticancer potency than racemic gossypol in human breast cancer. Anticancer Res 22(1A):33–38

    PubMed  Google Scholar 

  13. Boiani M, Daniel C, Liu X, Hogarty MD, Marnett LJ (2013) The stress protein BAG3 stabilizes Mcl-1 protein and promotes survival of cancer cells and resistance to antagonist ABT-737. J Biol Chem 288(10):6980–6990. doi:10.1074/jbc.M112.414177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lian J, Wu X, He F, Karnak D, Tang W, Meng Y, Xiang D, Ji M, Lawrence TS, Xu L (2011) A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2–Beclin1 interaction at endoplasmic reticulum. Cell Death Differ 18(1):60–71. doi:10.1038/cdd.2010.74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Colvin TA, Gabai VL, Gong J, Calderwood SK, Li H, Gummuluru S, Matchuk ON, Smirnova SG, Orlova NV, Zamulaeva IA, Garcia-Marcos M, Li X, Young ZT, Rauch JN, Gestwicki JE, Takayama S, Sherman MY (2014) Hsp70-Bag3 interactions regulate cancer-related signaling networks. Cancer Res 74(17):4731–4740. doi:10.1158/0008-5472.CAN-14-0747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yoon YJ, Kim JA, Shin KD, Shin DS, Han YM, Lee YJ, Lee JS, Kwon BM, Han DC (2011) KRIBB11 inhibits HSP70 synthesis through inhibition of heat shock factor 1 function by impairing the recruitment of positive transcription elongation factor b to the hsp70 promoter. J Biol Chem 286(3):1737–1747. doi:10.1074/jbc.M110.179440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Huber S, Oelsner M, Decker T, zum Buschenfelde CM, Wagner M, Lutzny G, Kuhnt T, Schmidt B, Oostendorp RA, Peschel C, Ringshausen I (2011) Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1. Leukemia 25(5):838–847. doi:10.1038/leu.2011.2

    Article  CAS  PubMed  Google Scholar 

  18. Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276(10):7320–7326. doi:10.1074/jbc.M008363200

    Article  CAS  PubMed  Google Scholar 

  19. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939. doi:10.1016/j.cell.2005.07.002

    Article  CAS  PubMed  Google Scholar 

  20. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8(3):705–711

    Article  CAS  PubMed  Google Scholar 

  21. Debatin KM (2004) Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother 53(3):153–159. doi:10.1007/s00262-003-0474-8

    Article  PubMed  Google Scholar 

  22. Zhou F, Yang Y, Xing D (2011) Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J 278(3):403–413. doi:10.1111/j.1742-4658.2010.07965.x

    Article  CAS  PubMed  Google Scholar 

  23. Gao P, Bauvy C, Souquere S, Tonelli G, Liu L, Zhu Y, Qiao Z, Bakula D, Proikas-Cezanne T, Pierron G, Codogno P, Chen Q, Mehrpour M (2010) The Bcl-2 homology domain 3 mimetic gossypol induces both Beclin 1-dependent and Beclin 1-independent cytoprotective autophagy in cancer cells. J Biol Chem 285(33):25570–25581. doi:10.1074/jbc.M110.118125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Rapino F, Jung M, Fulda S (2014) BAG3 induction is required to mitigate proteotoxicity via selective autophagy following inhibition of constitutive protein degradation pathways. Oncogene 33(13):1713–1724. doi:10.1038/onc.2013.110

    Article  CAS  PubMed  Google Scholar 

  25. Koehler BC, Scherr AL, Lorenz S, Elssner C, Kautz N, Welte S, Jaeger D, Urbanik T, Schulze-Bergkamen H (2014) Pan-Bcl-2 inhibitor obatoclax delays cell cycle progression and blocks migration of colorectal cancer cells. PLoS ONE 9(9):e106571. doi:10.1371/journal.pone.0106571

    Article  PubMed Central  PubMed  Google Scholar 

  26. Festa M, Del Valle L, Khalili K, Franco R, Scognamiglio G, Graziano V, De Laurenzi V, Turco MC, Rosati A (2011) BAG3 protein is overexpressed in human glioblastoma and is a potential target for therapy. Am J Pathol 178(6):2504–2512. doi:10.1016/j.ajpath.2011.02.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Tagscherer KE, Fassl A, Campos B, Farhadi M, Kraemer A, Bock BC, Macher-Goeppinger S, Radlwimmer B, Wiestler OD, Herold-Mende C, Roth W (2008) Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene 27(52):6646–6656. doi:10.1038/onc.2008.259

    Article  CAS  PubMed  Google Scholar 

  28. Dai C, Whitesell L, Rogers AB, Lindquist S (2007) Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130(6):1005–1018. doi:10.1016/j.cell.2007.07.020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Jacobs AT, Marnett LJ (2009) HSF1-mediated BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated colon cancer cells via stabilization of anti-apoptotic Bcl-2 proteins. J Biol Chem 284(14):9176–9183. doi:10.1074/jbc.M808656200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Carra E, Barbieri F, Marubbi D, Pattarozzi A, Favoni RE, Florio T, Daga A (2013) Sorafenib selectively depletes human glioblastoma tumor-initiating cells from primary cultures. Cell Cycle 12(3):491–500. doi:10.4161/cc.23372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Gabriele Köpf for excellent technical assistance. This study was supported by a grant of the Medical Faculty, Goethe University Frankfurt (Frankfurter Forschungsförderung 2012), to JM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Mani.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Ethical standard

The manuscript does not contain clinical studies or patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mani, J., Antonietti, P., Rakel, S. et al. Knockdown of BAG3 sensitizes bladder cancer cells to treatment with the BH3 mimetic ABT-737. World J Urol 34, 197–205 (2016). https://doi.org/10.1007/s00345-015-1616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-015-1616-2

Keywords

Navigation