Skip to main content

Advertisement

Log in

Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Historic alterations in land use from forest to grassland and cropland to forest were used to determine impacts on carbon (C) stocks and distribution and soil organic matter (SOM) characteristics on adjacent Cambisols in Eastern Germany. We investigated a continuous Norway spruce forest (F-F), a former cropland afforested in 1930 (C-F), and a grassland deforested in 1953 (F-G). For C and N stocks, we sampled the A and B horizons of nine soil pits per site. Additionally, we separated SOM fractions of A and B horizons by physical means from one central soil pit per pedon. To unravel differences of SOM composition, we analyzed SOM fractions by 13C-CPMAS NMR spectroscopy and radiocarbon analysis. For the mineral soils, differences in total C stocks between the sites were low (F-F = 8.3 kg m−2; C-F = 7.3 kg m−2; F-G = 8.2 kg m−2). Larger total C stocks (+25%) were found under continuous forest compared with grassland, due to the C stored within the organic horizons. Due to a faster turnover, the contents of free particulate organic matter (POM) were lower under grassland. High alkyl C/O/N-alkyl C ratios of free POM fractions indicated higher decomposition stages under forest (1.16) in relation to former cropland (0.48) and grassland (0.33). Historic management, such as burning of tree residues, was still identifiable in the subsoils by the composition and 14C activity of occluded POM fractions. The high potential of longer lasting C sequestration within fractions of slower turnover was indicated by the larger amounts of claybound C per square meter found under continuous forest in contrast to grassland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baisden WT, Amundson R, Cook AC, Brenner DL (2002) Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Glob Biogeochem Cycle 16:64.1–64.16

    Google Scholar 

  • Baldock JA, Oades JM, Nelson PN, Skene TM, Golchin A, Clarke P (1997) Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust J Soil Res 35:1061–1083

    Article  Google Scholar 

  • Blaschke K (1966) Die geschichtliche Entwicklung im Osterzgebirge. Werte der deutschen Heimat 10:187–193

    Google Scholar 

  • Brodowski S, John B, Flessa H, Amelung W (2006) Aggregate-occluded black carbon in soil. Eur J Soil Sci 57:539–546. doi:10.1111/j.1365-2389.2006.00807.x

    Article  Google Scholar 

  • Cole CV, Flach K, Lee J, Sauerbeck D, Stewart B (1993) Agricultural sources and sinks of carbon. Water Air Soil Pollut 70:11–122

    Google Scholar 

  • Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81:2314–2330

    Article  Google Scholar 

  • DeGryze S, Six J, Paustian K, Morris SJ, Paul EA, Merckx R (2004) Soil organic carbon pool changes following land-use conversions. Glob Change Biol 10:1120–1132

    Article  Google Scholar 

  • European Soil Bureau Network (2005) Soil atlas of Europe. Office for Official Publications of the European Communities, Luxembourg, p 128

    Google Scholar 

  • Eusterhues K, Rumpel C, Kögel-Knabner I (2007) Composition and radiocarbon age of HF-resistant soil organic matter in a Podzol and a Cambisol. Org Geochem 38:1356–1372. doi:10.1016/j.orggeochem.2007.04.001

    Article  CAS  Google Scholar 

  • Foereid B, Dawson LA, Johnson D, Rangel-Castro JI (2006) Fate of carbon in upland grassland subjected to liming using in situ (CO2)-C-13 pulse-labelling. Plant Soil 287:301–311. doi:10.1007/s11104-006-9078-3

    Article  CAS  Google Scholar 

  • Gerzabek MH, Antil RS, Kogel-Knabner I, Knicker H, Kirchmann H, Haberhauer G (2006) How are soil use and management reflected by soil organic matter characteristics: a spectroscopic approach. Eur J Soil Sci 57:485–494. doi:10.1111/j.1365-2389.2006.00794.x

    Article  CAS  Google Scholar 

  • Golchin A, Oades JM, Skjemstad JO, Clarke P (1994) Study of free and occluded particulate organic-matter in soils by solid-state C-13 Cp/Mas nmr-spectroscopy and scanning electron-microscopy. Aust J Soil Res 32:285–309. doi:10.1071/SR9940285

    Article  CAS  Google Scholar 

  • Golchin A, Baldock JA, Clarke P, Higashi T, Oades JM (1997) The effects of vegetation and burning on the chemical composition of soil organic matter of a volcanic ash soil as shown by C-13 NMR spectroscopy. 2. Density fractions. Geoderma 76:175–192. doi:10.1016/S0016-7061(96)00103-6

    Article  CAS  Google Scholar 

  • Guggenberger G, Zech W (1999) Soil organic matter composition under primary forest, pasture, and secondary forest succession, Region Huetar Norte, Costa Rica. For Ecol Manage 124:93–104. doi:10.1016/S0378-1127(99)00055-9

    Article  Google Scholar 

  • Guggenberger G, Christensen BT, Zech W (1994) Land-Use Effects on the Composition of Organic-Matter in Particle-Size Separates of Soil. 1. Lignin and Carbohydrate Signature. Eur J Soil Sci 45:449–458. doi:10.1111/j.1365-2389.1994.tb00530.x

    Article  CAS  Google Scholar 

  • Guggenberger G, Zech W, Haumaier L, Christensen BT (1995) Land-use effects on the composition of organic-matter in particle-size separates of soils. 2. Cpmas and Solution C-13 Nmr Analysis. Eur J Soil Sci 46:147–158. doi:10.1111/j.1365-2389.1995.tb01821.x

    Article  CAS  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Change Biol 8:345–360. doi:10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  • IPCC (2007) Fourth assessment report of the intergovernmental panel on climate change (IPCC). University Press, Cambridge

    Google Scholar 

  • John B, Yamashita T, Ludwig B, Flessa H (2005) Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 128:63–79. doi:10.1016/j.geoderma.2004.12.013

    Article  CAS  Google Scholar 

  • Kögel-Knabner I (1997) C-13 and N-15 NMR spectroscopy as a tool in soil organic matter studies. Geoderma 80:243–270. doi:10.1016/S0016-7061(97)00055-4

    Article  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162. doi:10.1016/S0038-0717(01)00158-4

    Article  Google Scholar 

  • Langley-Turnbaugh SJ, Keirstead DR (2005) Soil properties and land use history: A case study in New Hampshire. Northeastern Nat 12:391–402. doi:10.1656/1092-6194(2005)012[0391:SPALUH]2.0.CO;2

    Article  Google Scholar 

  • Macdonald AJ, Murphy DV, Mahieu N, Fillery IRP (2007) Labile soil organic matter pools under a mixed grass/lucerne pasture and adjacent native bush in Western Australia. Aust J Soil Res 45:333–343. doi:10.1071/SR06133

    Article  Google Scholar 

  • Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740. doi:10.1046/j.1365-3040.1999.00453.x

    Article  CAS  Google Scholar 

  • Preston CM, Trofymow JA, Niu J, Fyfe CA (1998) 13CPMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island. For Ecol Manage 111:51–68. doi:10.1016/S0378-1127(98)00307-7

    Article  Google Scholar 

  • Preston CM, Trofymow JA, Niu J, Fyfe CA (2002) Harvesting and climate effects on organic matter characteristics in British Columbia coastal forests. J Environ Qual 31:402–413

    Article  PubMed  CAS  Google Scholar 

  • Richter DD, Markewitz D, Trumbore SE, Wells CG (1999) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400:56–58. doi:10.1038/21867

    Article  CAS  Google Scholar 

  • Schmidt MWI, Knicker H, Hatcher PG, Kögel-Knabner I (1997) Improvement of C-13 and N-15 CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10% hydrofluoric acid. Eur J Soil Sci 48:319–328. doi:10.1111/j.1365-2389.1997.tb00552.x

    Article  Google Scholar 

  • Schöning I, Koegel-Knabner I (2006) Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biol Biochem 38:2411–2424. doi:10.1016/j.soilbio.2006.03.005

    Article  CAS  Google Scholar 

  • Schöning I, Knicker H, Kögel-Knabner I (2005a) Intimate association between O/N-alkyl carbon and iron oxides in clay fractions of forest soils. Org Geochem 36:1378–1390. doi:10.1016/j.orggeochem.2005.06.005

    Article  CAS  Google Scholar 

  • Schöning I, Morgenroth G, Kögel-Knabner I (2005b) O/N-alkyl and alkyl C are stabilised in fine particle size fractions of forest soils. Biogeochem 73:475–497. doi:10.1007/s10533-004-0897-0

    Article  CAS  Google Scholar 

  • Stuiver M, Polach HA (1977) Reporting of C-14 Data - Discussion. Radiocarbon 19:355–363

    Google Scholar 

  • Tate KR, Scott NA, Ross DJ, Parshotam A, Claydon JJ (2000) Plant effects on soil carbon storage and turnover in a montane beech (Nothofagus) forest and adjacent tussock grassland in New Zealand. Aust J Soil Res 38:685–698. doi:10.1071/SR99092

    Article  Google Scholar 

  • Thuille A, Buchmann N, Schulze ED (2000) Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiol 20:849–857

    PubMed  Google Scholar 

  • Trumbore S (2000) Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecol Appl 10:399–411. doi:10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2

    Article  Google Scholar 

  • UN (1998) Kyoto protocol to the United Nations framework convention on climate change. J Environ Law 37:215–224

    Google Scholar 

  • Van Reeuwijk LP (2002) Procedures for soil analysis, 6th edn. ISRIC, Wageningen

    Google Scholar 

  • Wall A, Hytonen J (2005) Soil fertility of afforested arable land compared to continuously forested sites. Plant Soil 275:247–260. doi:10.1007/s11104-005-1869-4

    Article  CAS  Google Scholar 

  • WRB IUSS International Working Group (2006) World reference base for soil resources 2006—A framework for international classification, correlation and communication. World Soil Res Reports 103:145

    Google Scholar 

Download references

Acknowledgements

We would like to thank L. and E. Mueller and E. Walter for their energetic help on the field sites. For their help in the laboratory, we thank L. Wissing, M. Greiner, and H. Fechter. H. Knicker is acknowledged for her help with 13C-CPMAS NMR spectroscopy and W. Haeusler for the X-ray diffraction measurements of our clay samples. For the fast processing of our samples, we would like to thank Xiaomei Xu and S. Trumbore at the KECK Carbon Cycle AMS Facility in Irvine, CA, USA. We thank two anonymous reviewers for very helpful comments on the manuscript. The project was generously funded by the Helmholtz Association in the joint virtual institute VH-129 “Center for Stable Isotope Analysis in Ecosystem Research.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten W. Mueller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, C.W., Koegel-Knabner, I. Soil organic carbon stocks, distribution, and composition affected by historic land use changes on adjacent sites. Biol Fertil Soils 45, 347–359 (2009). https://doi.org/10.1007/s00374-008-0336-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0336-9

Keywords

Navigation