Skip to main content

Advertisement

Log in

Soil carbon mineralisation responses to alterations of microbial diversity and soil structure

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Soil organisms are of fundamental importance for many soil functions, such as organic matter decomposition, nutrient cycling and energy flow. Most research suggests that soil microbial communities are functionally redundant, meaning that there is little relationship between microbial diversity and soil functions. However, the activity of biological communities is known to be affected by their physical environment. Here, the effects of changes in microbial diversity and soil structure on organic C (OC) mineralisation were investigated. Sterile soil samples that had been subjected to different physical perturbations were inoculated with microbial communities with different levels of diversity. The samples were incubated for a period of 127 days and the mineralisation of native and added (13C-labelled substrates, fructose and vanillin) OC was measured. It was hypothesised that the magnitude of the effect of changes in soil structure on OC mineralisation would increase as diversity decreased. The diversity treatment had a small but significant effect on the mineralisation of SOC and of the added substrates. The soil structure treatment had a significant effect only on the mineralisation of the added substrate C. There was no interaction between diversity and soil structure treatments, indicating that the relationship between diversity and OC decomposition was not dependent on the soil physical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison SD (2005) Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett 8:626–635. doi:10.1111/j.1461-0248.2005.00756.x

    Article  Google Scholar 

  • Attard E, Recous S, Chabbi A, De Berranger C, Guillaumaud N, Labreuche J, Philippot L, Schmid B, Le Roux X (2011) Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses. Glob Chang Biol 17:1975–1989. doi:10.1111/j.1365-2486.2010.02340.x

    Article  Google Scholar 

  • Balesdent J, Besnard E, Arrouays D, Chenu C (1998) The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence. Plant Soil 201:49–57. doi:10.1023/A:1004337314970

    Article  CAS  Google Scholar 

  • Baumann K, Dignac MF, Rumpel C, Bardoux G, Sarr A, Steffens M, Maron PA (2013) Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry. doi: 10.1007/s10533-012-9800-6

  • Berns AE, Philipp H, Narres HD, Burauel P, Vereecken H, Tappe W (2008) Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. Eur J Soil Sci 59:540–550. doi:10.1111/j.1365-2389.2008.01016.x

    Article  CAS  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992. doi:10.1038/nature05202

    Article  PubMed  CAS  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499. doi:10.1007/s00374-012-0691-4

    Article  Google Scholar 

  • Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242. doi:10.1038/35012241

    Article  PubMed  CAS  Google Scholar 

  • Elfstrand S, Lagerlöf J, Hedlund K, Mårtensson A (2008) Carbon routes from decomposing plant residues and living roots into soil food webs assessed with 13C labelling. Soil Biol Biochem 40:2530–2539. doi:10.1016/j.soilbio.2008.06.013

    Article  CAS  Google Scholar 

  • Fierer N, Bradford M, Jackson R (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Frostegård A, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertil Soils 22:59–65

    Article  Google Scholar 

  • Frostegård A, Bååth E, Tunlid A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty-acid analysis. Soil Biol Biochem 25:723–730

    Article  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390. doi:10.1126/science.1112665

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pausas J, Paterson E (2011) Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon. Soil Biol Biochem 43:1705–1713. doi:10.1016/j.soilbio.2011.04.016

    Article  CAS  Google Scholar 

  • Griffiths BS, Ritz K, Bardgett RD, Cook R, Christensen S, Ekelund F, Sørensen SJ, Bååth E, Bloem J, de Ruiter PC, Dolfing J, Nicolardot B (2000) Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity–ecosystem function relationship. Oikos 90:279–294. doi:10.1034/j.1600-0706.2000.900208.x

    Article  Google Scholar 

  • Griffiths BS, Ritz K, Wheatley R, Kuan HL, Boag B, Christensen S, Ekelund F, Sorensen SJ, Muller S, Bloem J (2001) An examination of the biodiversity–ecosystem function relationship in arable soil microbial communities. Soil Biol Biochem 33:1713–1722

    Article  CAS  Google Scholar 

  • Harris K, Young IM, Gilligan CA, Otten W, Ritz K (2003) Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiol Ecol 44:45–56. doi:10.1111/j.1574-6941.2003.tb01089.x

    Article  PubMed  CAS  Google Scholar 

  • Hassink J (1992) Effects of soil texture and structure on carbon and nitrogen mineralization in grassland soils. Biol Fertil Soils 14:126–134. doi:10.1007/BF00336262

    Article  CAS  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O'Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze E-D, Siamantziouras A-SD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286:1123–1127. doi:10.1126/science.286.5442.1123

    Article  PubMed  CAS  Google Scholar 

  • Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA, O'Donnell AG, Brookes PC (2008) Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol Biochem 40:61–73. doi:10.1016/j.soilbio.2007.06.021

    Article  CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. doi:10.1126/science.1064088

    Article  PubMed  CAS  Google Scholar 

  • Loreau M, Mouquet N, Gonzalez A (2003) Biodiversity as spatial insurance in heterogeneous landscapes. PNAS 100:12765–12770. doi:10.1073/pnas.2235465100

    Article  PubMed  CAS  Google Scholar 

  • Martin SL, Mooney SJ, Dickinson MJ, West HM (2012) Soil structural responses to alterations in soil microbiota induced by the dilution method and mycorrhizal fungal inoculation. Pedobiologia 55:271–281. doi:10.1016/j.pedobi.2012.06.001

    Article  Google Scholar 

  • McNamara NP, Black HIJ, Beresford NA, Parekh NR (2003) Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl Soil Ecol 24:117–132. doi:10.1016/S0929-1393(03)00073-8

    Article  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670. doi:10.1046/j.1351-0754.2003.0556.x

    Article  Google Scholar 

  • Nielsen UN, Ayres E, Wall DH, Bardgett RD (2011) Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. Eur J Soil Sci 62:105–116. doi:10.1111/j.1365-2389.2010.01314.x

    Article  CAS  Google Scholar 

  • Roesch LF, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroubs SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290. doi:10.1038/ismej.2007.53

    PubMed  CAS  Google Scholar 

  • Ruamps LS, Nunan N, Chenu C (2011) Microbial biogeography at the soil pore scale. Soil Biol Biochem 43:280–286. doi:10.1016/j.soilbio.2010.10.010

    Article  CAS  Google Scholar 

  • Sleutel S, Bouckaert L, Buchan D, Van Loo D, Cornelis WM, Sanga HG (2012) Manipulation of the soil pore and microbial community structure in soil mesocosm incubation studies. Soil Biol Biochem 45:40–48. doi:10.1016/j.soilbio.2011.09.016

    Article  CAS  Google Scholar 

  • Strong DT, Wever HD, Merckx R, Recous S (2004) Spatial location of carbon decomposition in the soil pore system. Eur J Soil Sci 55:739–750. doi:10.1111/j.1365-2389.2004.00639.x

    Article  Google Scholar 

  • Tilman D, Reich PB, Isbell F (2012) Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. PNAS 109:10394–10397. doi:10.1073/pnas.1208240109

    Article  PubMed  CAS  Google Scholar 

  • Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, Guillaumaud N, Le Roux X (2006) Maintenance of soil functioning following erosion of microbial diversity. Environ Microbiol 8:2162–2169. doi:10.1111/j.1462-2920.2006.01098.x

    Article  PubMed  CAS  Google Scholar 

  • Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, Le Roux X (2007) Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ Microbiol 9:2211–2219. doi:10.1111/j.1462-2920.2007.01335.x

    Article  PubMed  Google Scholar 

  • Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275–294. doi:10.1016/S0045-6535(97)00155-0

    Article  PubMed  CAS  Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fertil Soils 29:111–129. doi:10.1007/s003740050533

    Article  CAS  Google Scholar 

  • Zhang Q-F, Jiang Z-T, Gao H-J, Li R (2007) Recovery of vanillin from aqueous solutions using macroporous adsorption resins. Eur Food Res Technol 226:377–383. doi:10.1007/s00217-006-0548-x

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Agence Nationale de la Recherche (ANR) under the “SYSCOMM (Systèmes complexes et modélisation mathématique)” Program (MEPSOM project) and by the Région Ile-de-France (DIM Astréa). The authors would like to thank Daniel Billiou for help with the elemental analysis and Gérard Bardoux for the isotopic measurements. They would also like to thank Michel Bertrand and the Unité expérimentale for the access and for maintaining the “La Cage” long-term field trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoise Nunan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 715 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juarez, S., Nunan, N., Duday, AC. et al. Soil carbon mineralisation responses to alterations of microbial diversity and soil structure. Biol Fertil Soils 49, 939–948 (2013). https://doi.org/10.1007/s00374-013-0784-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-013-0784-8

Keywords

Navigation