Skip to main content
Log in

Differential gene expression during metamorphosis: a promising approach for age estimation of forensically important Calliphora vicina pupae (Diptera: Calliphoridae)

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Necrophagous blow fly larvae can provide accurate estimates of the minimum postmortem interval in death investigations. During larval development, predictable morphological changes occur and measurements of weight, length, and width are compared to species-specific growth curves for reliable age estimates. However, aging blow fly pupae is more challenging because morphological and anatomical changes are not visible with the naked eye. Thus, delicate preparation of the pupae or rearing to the adult stage seems unavoidable. Conversely, metamorphosis evokes a remodelling of the larval shape to adult structures, and gene expression analysis potentially serves as a molecular tool to mirror the ageing process of a pupa. The present study focuses on the differential expression of two newly described, arbitrarily named genes (15_2, 2014192) and two previously identified genes (actin, arylphorin receptor) during Calliphora vicina (Diptera: Calliphoridae) metamorphosis. Quantification through real-time PCR revealed significant up- and downregulation of these transcripts found to be temperature dependent and age specific, hence, a new possibility to age forensically important blow fly pupae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Smith KGV (1986) A manual of forensic entomology. Cornell University Press, London

    Google Scholar 

  2. Villet MH, Amendt J (2011) Advances in entomological methods for death time estimation. In: Turk EE (ed) Forensic Pathology Reviews doi:10.1007/978-1-61779-249-6_11.

  3. Amendt J, Richards CS, Campobasso CP, Zehner R, Hall MJR (2011) Forensic entomology: applications and limitations. Forensic Sci Med Pathol doi:10.1007/s12024-010-9209-2

  4. Forbes SI, Dadour I (2010) The soil environment and forensic entomology. In: Byrd JH and Castner JL (eds) Forensic entomology—The utility of arthropods in legal investigations, 2nd edn. CRC, Boca Raton, p 416

    Google Scholar 

  5. Richards CS, Crous KL, Villet M (2009) Models of development for blowfly sister species Chrysomya chloropyga and Chrysomya putoria. Med Vet Entomol 23:56–61

    Article  PubMed  CAS  Google Scholar 

  6. Grassberger M, Reiter C (2001) Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen- and isomorphen-diagram. Forensic Sci Int 120:32–36

    Article  PubMed  CAS  Google Scholar 

  7. Wells JD, LaMotte LR (1995) Estimating maggot age from weight using inverse prediction. J Forensic Sci 40:585–590

    Google Scholar 

  8. Greenberg B (1991) Flies as forensic indicators. J Med Entomol 28:565–577

    PubMed  CAS  Google Scholar 

  9. Reiter C (1984) Zum Wachstumsverhalten der Maden der blauen Schmeißfliege Calliphora vicina. Zeitschrift für Rechtsmedizin, 91:295–308

    Article  CAS  Google Scholar 

  10. Marchenko MI (2001) Medicolegal relevance of cadaver entomofauna for the determination of the time of death. Forensic Sci Int 120:89–109

    Article  PubMed  CAS  Google Scholar 

  11. Zajac BK (2011) Morphologische und histologische Methoden zur Bestimmung des Alters forensisch relevanter Fliegenpuppen. Diplomarbeit. Goethe-Universität Frankfurt am Main

    Google Scholar 

  12. Bainbridge SP, Bownes M (1981) Staging the metamorphosis of Drosophila melangaster. J Embryol exp Morph 66:57–80

    PubMed  CAS  Google Scholar 

  13. Robertson CW (1936) The metamorphosis of Drosophila melanogaster, including an accurately timed account of the principal morphological changes. J Morphol 59:351–399.

    Article  Google Scholar 

  14. Beckstead RB, Lam G, Thummel CS (2005) The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis. Genome Biol 6:R99

    Article  PubMed  Google Scholar 

  15. Thummel CS (1996) Flies on steroids—Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends Genet 12:306–310

    Article  PubMed  CAS  Google Scholar 

  16. Buszczak M, Segraves WA (2000) Insect metamorphosis: out with the old, in with the new. Curr Biol 10:R830–R833

    Article  PubMed  CAS  Google Scholar 

  17. White KP, Rifkin SA, Hurban P, Hogness DS (1999) Microarray analysis of Drosophila development during metamorphosis. Science 286:2179–2184

    Article  PubMed  CAS  Google Scholar 

  18. Bowen ID, Mullarkey K, Morgan SM (1996) Programmed cell death during metamorphosis in the blow-fly Calliphora vomitoria. Microsc Res Tech 34:202–217

    Article  PubMed  CAS  Google Scholar 

  19. Tarone AM, Jennings KC, Foran DR (2007) Aging blow fly eggs using gene expression: a feasibility study. J Forensic Sci 52:1350–1354

    Article  PubMed  CAS  Google Scholar 

  20. Tarone AM, Foran DR (2011) Gene expression during blow fly development: improving the precision of age estimates in forensic entomology. J Forensic Sci 56:S112–S122.

    Article  PubMed  CAS  Google Scholar 

  21. Ames C, Turner B, Daniel B (2006) Estimating the post-mortem interval (II): the use of differential temporal gene expression to determine the age of blowfly pupae. International Congress Series 1288:861–863

    Article  CAS  Google Scholar 

  22. Gaudry E, Blais C, Annick M, Dauphin-Villemant C (2006) Study of steroidogenesis in pupae of the forensically important blow fly Protophormia terraenovae (Robineau-Desvoidy) (Diptera: Calliphoridae). Forensic Sci Int 160:27–34

    Article  PubMed  CAS  Google Scholar 

  23. Mösch SA (2005) Molekularbiologische Altersbestimmung an Puppen der forensisch relevanten Schmeißfliege Lucilia sericata. Diplomarbeit, Fachhochschule Aachen.

    Google Scholar 

  24. Kim YJ, Kwak CI, Gu YY, Hwang IT, Chun JY (2004) Annealing control primer system for identification of differentially expressed genes on agarose gels. BioTech 36:424–434

    CAS  Google Scholar 

  25. Hwang IT, Kim YJ, Kim SH, Kwak CI, Gu YY, Chun JY (2003) Annealing control primer system for improving specificity of PCR amplification. BioTech 35:2–6

    Google Scholar 

  26. Rognes K (1991) Blowflies (Diptera, Calliphoridae) of Fennoscandia and Denmark. E.J. Brill/Scandinavian Science, Leiden

    Google Scholar 

  27. GeneFishing™ DEG Premix Kit, User Manual, Seegene

  28. Beckmann B (2004) Studien der Genexpressionsänderung während der Entwicklung von Drosophila melanogaster mittels DNA-Microarrays. Dissertation. Ruprecht-Karls-Universität Heidelberg

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta (CT)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  30. Pfaffl MW (2001) A new mathematical model for relative quantificationin real-time RT-PCR. Nucleic Acids Res 29: e45

    Article  PubMed  CAS  Google Scholar 

  31. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3: research0034.1-research0034.11

  32. Ramakers C, Ruijter JM, Lekanne Deprez RH, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  33. Burmester T, Scheller K (1997) Developmentally controlled cleavage of the Calliphora arylphorin receptor and posttranslational action of the steroid hormone 20-hydroxyecdysone. Eur J Biochem 247:695–702

    Article  PubMed  CAS  Google Scholar 

  34. Tarone AM, Picard CJ, Spiegelman C, Foran DR (2011) Population and temperature effects on Lucilia sericata (Diptera: Calliphoridae) body size and minimum developmental time. J Med Entomol 48:1062–1068.

    Article  PubMed  CAS  Google Scholar 

  35. Gallagher MB, Sandhu S, Kimsey R (2010) Variation in developmental time for geographically distinct populations of the common green bottle fly, Lucilia sericata (Meigen). J Forensic Sci 55:438–442

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the Deutsche Forschungsgemeinschaft (project number: ZE 501/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Boehme.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 12 kb)

ESM 2

(DOCX 226 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boehme, P., Spahn, P., Amendt, J. et al. Differential gene expression during metamorphosis: a promising approach for age estimation of forensically important Calliphora vicina pupae (Diptera: Calliphoridae). Int J Legal Med 127, 243–249 (2013). https://doi.org/10.1007/s00414-012-0699-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-012-0699-1

Keywords

Navigation