Skip to main content
Log in

Extra cellular matrix remodelling after heterotopic rat heart transplantation: gene expression profiling and involvement of ED-A+ fibronectin, alpha-smooth muscle actin and B+ tenascin-C in chronic cardiac allograft rejection

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Chronic cardiac rejection is represented by cardiac allograft vasculopathy (CAV) and cardiac interstitial fibrosis (CIF) known to cause severe complications. These processes are accompanied by remarkable changes in the cardiac extra cellular matrix (cECM). The aim of our study was to analyse the cECM remodelling in chronic rejection and to elucidate a potential role of ED-A domain containing fibronectin (ED-A+ Fn), alpha smooth muscle actin (ASMA) and B domain containing tenascin-C (B+ Tn-C). A model of chronic rejection after heterotopic rat heart transplantation was used. Allografts, recipient and control hearts were subjected to histological assessment of rejection grade, to real-time PCR based analysis of 84 genes of ECM and adhesion molecules and to immunofluorescence labelling procedures, including ED-A+ Fn, ASMA and B+ Tn-C antibodies. Histological analysis revealed different grades of chronic rejection. By gene expression analysis, a relevant up-regulation of the majority of ECM genes in association with chronic rejection could be shown. For 8 genes, there was a relevant up-regulation in allografts as well as in the corresponding recipient hearts. Association of ASMA positive cells with the grade of chronic rejection could be proven. In CAV and also in CIF there were extensive co-depositions of ED-A+ Fn, ASMA and B+ Tn-C. In conclusion, chronic cardiac allograft rejection is associated with a cECM remodelling. ASMA protein deposition in CAV, and CIF is a valuable marker to detect chronic rejection. Interactions of VSMCs and Fibro-/Myofibroblasts with ED-A+ Fn and B+ Tn-C might functionally contribute to the development of chronic cardiac rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong AT, Binkley PF, Baker PB, Myerowitz PD, Leier CV (1998) Quantitative investigation of cardiomyocyte hypertrophy and myocardial fibrosis over 6 years after cardiac transplantation. J Am Coll Cardiol 32:704–710

    Article  CAS  PubMed  Google Scholar 

  • Astrof S, Hynes RO (2009) Fibronectins in vascular morphogenesis. Angiogenesis 12:165–175

    Article  CAS  PubMed  Google Scholar 

  • Berndt A, Köllner R, Richter P, Franz M, Voigt A, Berndt A, Borsi L, Giavazzi R, Neri D, Kosmehl H (2010) A comparative analysis of oncofetal fibronectin and tenascin-C incorporation in tumour vessels using human recombinant SIP format antibodies. Histochem Cell Biol 133:467–475

    Article  CAS  PubMed  Google Scholar 

  • Borsi L, Balza E, Gaggero B, Allemanni G, Zardi L (1995) The alternative splicing pattern of the tenascin-C pre-mRNA is controlled by the extracellular pH. J Biol Chem 270:6243–6245

    Article  CAS  PubMed  Google Scholar 

  • Bowers SL, Banerjee I, Baudino TA (2010) The extracellular matrix: at the center of it all. J Mol Cell Cardiol 48:474–482

    Article  CAS  PubMed  Google Scholar 

  • Coito AJ, Binder J, de Sousa M, Kupiec-Weglinski JW (1994) The expression of extracellular matrix proteins during accelerated rejection of cardiac allografts in sensitized rats. Transplantation 57:599–605

    CAS  PubMed  Google Scholar 

  • Coito AJ, Binder J, Brown LF, de Sousa M, Van de Water L, Kupiec-Weglinski JW (1995) TNF-alpha upregulates the expression of fibronectin in acutely rejecting rat cardiac allografts. Transplant Proc 27:463–465

    CAS  PubMed  Google Scholar 

  • Coito AJ, Brown LF, Peters JH, Kupiec-Weglinski JW, van de Water L (1997) Expression of fibronectin splicing variants in organ transplantation: a differential pattern between rat cardiac allografts and isografts. Am J Pathol 150:1757–1772

    CAS  PubMed  Google Scholar 

  • Coito AJ, de Sousa M, Kupiec-Weglinski JW (2000) Fibronectin in immune responses in organ transplant recipients. Dev Immunol 7:239–248

    Article  CAS  PubMed  Google Scholar 

  • Coito AJ, Kato H, Azimi R, Kupiec-Weglinski JW (2001) Chronic allograft rejection versus tolerance: a critical role for EIIIA(+) fibronectin. Transplant Proc 33:526–527

    Article  CAS  PubMed  Google Scholar 

  • Desmoulière A, Gabbiani G (1996) The role of the myofibroblast in wound healing and fibrocontractive diseases. In: Clark RAF (ed) The molecular and cellular biology of wound repair. Plenum Press, New York, pp 391–423

  • Dilley RJ, McGeachie JK, Prendergast FJ (1987) A review of the proliferative behaviour, morphology and phenotypes of vascular smooth muscle. Atherosclerosis 63:99–107

    Article  CAS  PubMed  Google Scholar 

  • Farhadian F, Contard F, Corbier A, Barrieux A, Rappaport L, Samuel JL (1995) Fibronectin expression during physiological and pathological cardiac growth. J Mol Cell Cardiol 27:981–990

    Article  CAS  PubMed  Google Scholar 

  • Franz M, Richter P, Geyer C, Hansen T, Acuña LD, Hyckel P, Böhmer FD, Kosmehl H, Berndt A (2007) Mesenchymal cells contribute to the synthesis and deposition of the laminin-5 gamma2 chain in the invasive front of oral squamous cell carcinoma. J Mol Histol 38:183–190

    Article  CAS  PubMed  Google Scholar 

  • Franz M, Berndt A, Altendorf-Hofmann A, Fiedler N, Richter P, Schumm J, Fritzenwanger M, Figulla HR, Brehm BR (2009) Serum levels of large tenascin-C variants, matrix metalloproteinase-9, and tissue inhibitors of matrix metalloproteinases in concentric versus eccentric left ventricular hypertrophy. Eur J Heart Fail 11:1057–1062

    Article  CAS  PubMed  Google Scholar 

  • Franz M, Brehm BR, Richter P, Gruen K, Neri D, Kosmehl H, Hekmat K, Renner A, Gummert J, Figulla HR, Berndt A (2010a) Changes in extra cellular matrix remodelling and re-expression of fibronectin and tenascin-C splicing variants in human myocardial tissue of the right atrial auricle: implications for a targeted therapy of cardiovascular diseases using human SIP format antibodies. J Mol Histol 41:39–50

    Article  CAS  PubMed  Google Scholar 

  • Franz M, Berndt A, Gruen K, Richter P, Kosmehl H, Neri D, Gummert J, Figulla HR, Brehm BR, Renner A (2010b) Expression of extra domain A containing fibronectin in chronic cardiac allograft rejection. J Heart Lung Transplant. doi:10.1016/j.healun.2010.08.015

  • Gabbiani G, Kocher O, Bloom WS, Vandekerckhove J, Weber K (1984) Actin expression in smooth muscle cells of rat aortic intimal thickening, human atheromatous plaque, and cultured rat aortic media. J Clin Invest 73:148–152

    Article  CAS  PubMed  Google Scholar 

  • Gabler U, Berndt A, Kosmehl H, Mandel U, Zardi L, Müller S, Stelzner A, Katenkamp D (1996) Matrix remodelling in dilated cardiomyopathy entails the occurrence of oncofetal fibronectin molecular variants. Heart 75:358–362

    Article  CAS  PubMed  Google Scholar 

  • Glukhova MA, Frid MG, Shekhonin BV, Vasilevskaya TD, Grunwald J, Saginati M, Koteliansky VE (1989) Expression of extra domain A fibronectin sequence in vascular smooth muscle cells is phenotype dependent. J Cell Biol 109:357–366

    Article  CAS  PubMed  Google Scholar 

  • Hausdorf G, Banner NR, Mitchell A, Khaghani A, Martin M, Yacoub M (1989) Diastolic function after cardiac and heart-lung transplantation. Br Heart J 62:123–132

    Article  CAS  PubMed  Google Scholar 

  • Hosenpud JD, Shipley GD, Wagner CR (1992) Cardiac allograft vasculopathy: current concepts, recent developments, and future directions. J Heart Lung Transplant 11:9–23

    CAS  PubMed  Google Scholar 

  • Hosenpud JD, Bennett LE, Keck BM, Boucek MM, Novick RJ (2001) The Registry of the International Society for Heart and Lung Transplantation: eighteenth Official Report-2001. J Heart Lung Transplant 20:805–815

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim M, Hendry P, Masters R, Rubens F, Lam BK, Ruel M, Davies R, Haddad H, Veinot JP, Mesana T (2007) Management of acute severe perioperative failure of cardiac allografts: a single-centre experience with a review of the literature. Can J Cardiol 23:363–367

    PubMed  Google Scholar 

  • Imanaka-Yoshida K, Matsuura R, Isaka N, Nakano T, Sakakura T, Yoshida T (2001) Serial extracellular matrix changes in neointimal lesions of human coronary artery after percutaneous transluminal coronary angioplasty: clinical significance of early tenascin-C expression. Virchows Arch 439:185–190

    Article  CAS  PubMed  Google Scholar 

  • Imanaka-Yoshida K, Hiroe M, Yasutomi Y, Toyozaki T, Tsuchiya T, Noda N, Maki T, Nishikawa T, Sakakura T, Yoshida T (2002) Tenascin-C is a useful marker for disease activity in myocarditis. J Pathol 197:388–394

    Article  CAS  PubMed  Google Scholar 

  • Imanaka-Yoshida K, Matsumoto K, Hara M, Sakakura T, Yoshida T (2003) The dynamic expression of tenascin-C and tenascin-X during early heart development in the mouse. Differentiation 71:291–298

    Article  CAS  PubMed  Google Scholar 

  • Imanaka-Yoshida K, Hiroe M, Yoshida T (2004) Interaction between cell and extracellular matrix in heart disease: multiple roles of tenascin-C in tissue remodeling. Histol Histopathol 19:517–525

    CAS  PubMed  Google Scholar 

  • Jahania MS, Mullett TW, Sanchez JA, Narayan P, Lasley RD, Mentzer RM Jr (2000) Acute allograft failure in thoracic organ transplantation. J Card Surg 15:122–128

    CAS  PubMed  Google Scholar 

  • Jones PL, Jones FS (2000) Tenascin-C in development and disease: gene regulation and cell function. Matrix Biol 19:581–596

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Yoon CS, Rah B (1999) Expression of extracellular matrix components fibronectin and laminin in the human fetal heart. Cell Struct Funct 24:19–26

    Article  CAS  PubMed  Google Scholar 

  • Kim HE, Dalal SS, Young E, Legato MJ, Weisfeldt ML, D’Armiento J (2000) Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 106:857–866

    Article  CAS  PubMed  Google Scholar 

  • Kosmehl H, Berndt A, Katenkamp D (1996) Molecular variants of fibronectin and laminin: structure, physiological occurrence and histopathological aspects. Virchows Arch 429:311–322

    Article  CAS  PubMed  Google Scholar 

  • Lange V, Renner A, Sagstetter M, Harms H, Elert O (2006) Cardiac allograft vasculopathy after cardiac transplantation and hormone therapy: positive effects? Transplantation 82:234–240

    Article  CAS  PubMed  Google Scholar 

  • Leask A (2010) Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res 106:1675–1680

    Article  CAS  PubMed  Google Scholar 

  • Libby P, Pober J (2001) Chronic rejection. Immunity 14:387–397

    Article  CAS  PubMed  Google Scholar 

  • Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of colocalization of objects in dual-color confocal images. J Microsc (Oxford) 169:375–382

    Google Scholar 

  • Mitchell RN (2009) Graft vascular disease: immune response meets the vessel wall. Annu Rev Pathol 4:19–47

    Article  CAS  PubMed  Google Scholar 

  • Mitchell R, Libby P (2007) Vascular remodeling in transplant vasculopathy. Circ Res 100:967–978

    Article  CAS  PubMed  Google Scholar 

  • Morimoto S, Imanaka-Yoshida K, Hiramitsu S, Kato S, Ohtsuki M, Uemura A, Kato Y, Nishikawa T, Toyozaki T, Hishida H, Yoshida T, Hiroe M (2005) Diagnostic utility of tenascin-C for evaluation of the activity of human acute myocarditis. J Pathol 205:460–467

    Article  CAS  PubMed  Google Scholar 

  • Nozyński J, Zakliczyński M, Zembala-Nozyńska E, Konecka-Mrówka D, Przybylski R, Nikiel B, Lange D, Mrówka A, Przybylski J, Maruszewski M, Zembala M (2007) Remodeling of human transplanted myocardium in ten-year follow-up: a clinical pathology study. Transplant Proc 39:2833–2840

    Article  PubMed  Google Scholar 

  • Ono K, Lindsey ES (1969) Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg 57:225–229

    CAS  PubMed  Google Scholar 

  • Owens GK, Thompson MM (1986) Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. Relationship between growth and cytodifferentiation. J Biol Chem 261:13373–13380

    CAS  PubMed  Google Scholar 

  • Pawitan JA (2010) Weighting the potential of using tenascin C in diagnosis and therapy of atherosclerosis. Acta Med Indones 42:104–107

    PubMed  Google Scholar 

  • Pedretti M, Rancic Z, Soltermann A, Herzog BA, Schliemann C, Lachat M, Neri D, Kaufmann PA (2010) Comparative immunohistochemical staining of atherosclerotic plaques using F16, F8 and L19: Three clinical-grade fully human antibodies. Atherosclerosis 208:382–389

    Article  CAS  PubMed  Google Scholar 

  • Pickering JG, Boughner DR (1990) Fibrosis in the transplanted heart and its relation to donor ischemic time. Assessment with polarized light microscopy and digital image analysis. Circulation 81:949–958

    CAS  PubMed  Google Scholar 

  • Renner A, Sagstetter MR, Götz ME, Lange V, Bengel D, Harms H, Riederer P, Elert O (2004) Heterotopic rat heart transplantation: severe loss of glutathione in 8-hour ischemic hearts. J Heart Lung Transplant 23:1093–1102

    Article  PubMed  Google Scholar 

  • Rohr S (2009) Myofibroblasts in diseased hearts: new players in cardiac arrhythmias? Heart Rhythm 6:848–856

    Article  PubMed  Google Scholar 

  • Russell ME, Fujita M, Masek MA, Rowan RA, Billingham ME (1993) Cardiac graft vascular disease. Nonselective involvement of large and small vessels. Transplantation 56:1599–1601

    CAS  PubMed  Google Scholar 

  • Sarno G, Lerman A, Bae JH, Schukro C, Glogar D, Margolis PM, Goethals M, Verstreken S, Bartunek L, Koenig A, Wijns W, Vanderheyden M (2009) Multicenter assessment of coronary allograft vasculopathy by intravascular ultrasound-derived analysis of plaque composition. Nat Clin Pract Cardiovasc Med 6:61–69

    Article  PubMed  Google Scholar 

  • Sawada Y, Onoda K, Imanaka-Yoshida K, Maruyama J, Yamamoto K, Yoshida T, Shimpo H (2007) Tenascin-C synthesized in both donor grafts and recipients accelerates artery graft stenosis. Cardiovasc Res 74:366–376

    Article  CAS  PubMed  Google Scholar 

  • Schellings MW, Pinto YM, Heymans S (2004) Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res 64:24–31

    Article  CAS  PubMed  Google Scholar 

  • Schupp DJ, Huck BP, Sykora J, Flechtenmacher C, Gorenflo M, Koch A, Sack FU, Haass M, Katus HA, Ulmer HE, Hagl S, Otto HF, Schnabel PA (2006) Right ventricular expression of extracellular matrix proteins, matrix-metalloproteinases, and their inhibitors over a period of 3 years after heart transplantation. Virchows Arch 448:184–194

    Article  CAS  PubMed  Google Scholar 

  • Schwarzbauer JE (1991) Fibronectin: from gene to protein. Curr Opin Cell Biol 3:786–791

    Article  CAS  PubMed  Google Scholar 

  • Serini G, Gabbiani G (1999) Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res 250:273–283

    Article  CAS  PubMed  Google Scholar 

  • Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142:873–881

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Lee WS, He Q, Zhang D, Fletcher DL Jr, Newell JB, Haber E (1996) Immunologic basis of transplant-associated arteriosclerosis. Proc Natl Acad Sci USA 93:4051–4056

    Article  CAS  PubMed  Google Scholar 

  • Silacci M, Brack S, Schirru G, Mårlind J, Ettorre A, Merlo A, Viti F, Neri D (2005) Design, construction, and characterization of a large synthetic human antibody phage display library. Proteomics 5:2340–2350

    Article  CAS  PubMed  Google Scholar 

  • Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L (1998) Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function. Circ Res 82:482–495

    CAS  PubMed  Google Scholar 

  • Spinale FG, Gunasinghe H, Sprunger PD, Baskin JM, Bradham WC (2002) Extracellular degradative pathways in myocardial remodeling and progression to heart failure. J Card Fail 8:S332–S338

    Google Scholar 

  • Stewart S, Winters GL, Fishbein MC, Tazelaar HD, Kobashigawa J, Abrams J, Andersen CB, Angelini A, Berry GJ, Burke MM, Demetris AJ, Hammond E, Itescu S, Marboe CC, McManus B, Reed EF, Reinsmoen NL, Rodriguez ER, Rose AG, Rose M, Suciu-Focia N, Zeevi A, Billingham ME (2005) Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant 24:1710–1720

    Article  PubMed  Google Scholar 

  • Subramanian SV, Kelm RJ, Polikandriotis JA, Orosz CG, Strauch AR (2002) Reprogramming of vascular smooth muscle alpha-actin gene expression as an early indicator of dysfunctional remodeling following heart transplant. Cardiovasc Res 54:539–548

    Article  CAS  PubMed  Google Scholar 

  • Suzuki J, Isobe M, Aikawa M, Kawauchi M, Shiojima I, Kobayashi N, Tojo A, Suzuki T, Kimura K, Nishikawa T, Sakai T, Sekiguchi M, Yazaki Y, Nagai R (1996) Nonmuscle and smooth muscle myosin heavy chain expression in rejected cardiac allografts. A study in rat and monkey models. Circulation 94:1118–1124

    CAS  PubMed  Google Scholar 

  • Suzuki J, Isobe M, Morishita R, Nagai R (2010) Characteristics of chronic rejection in heart transplantation: important elements of pathogenesis and future treatments. Circ J 74:233–239

    Article  CAS  PubMed  Google Scholar 

  • Taylor DO, Stehlik J, Edwards LB, Aurora P, Christie JD, Dobbels F, Kirk R, Kucheryavaya AY, Rahmel AO, Hertz MI (2009) Registry of the International Society for Heart and Lung Transplantation: Twenty-sixth Official Adult Heart Transplant Report-2009. J Heart Lung Transplant 28:1007–1022

    Article  PubMed  Google Scholar 

  • Terasaki F, Okamoto H, Onishi K, Sato A, Shimomura H, Tsukada B, Imanaka-Yoshida K, Hiroe M, Yoshida T, Kitaura Y, Kitabatake A, Study Group for Intractable Diseases by a Grant from the Ministry of Health, Labor, Welfare of Japan (2007) Higher serum tenascin-C levels reflect the severity of heart failure, left ventricular dysfunction and remodeling in patients with dilated cardiomyopathy. Circ J 71:327–330

    Article  CAS  PubMed  Google Scholar 

  • Vega JD, Moore J, Murray S, Chen JM, Johnson MR, Dyke DB (2009) Heart transplantation in the United States, 1998–2007. Am J Transplant 9:932–941

    Article  CAS  PubMed  Google Scholar 

  • Ventura HO, Mehra MR, Smart FW, Stapleton DD (1995) Cardiac allograft vasculopathy: current concepts. Am Heart J 129:791–799

    Article  CAS  PubMed  Google Scholar 

  • Villa A, Trachsel E, Kaspar M, Schliemann C, Sommavilla R, Rybak JN, Rösli C, Borsi L, Neri D (2008) A high-affinity human monoclonal antibody specific to the alternatively spliced EDA domain of fibronectin efficiently targets tumor neo-vasculature in vivo. Int J Cancer 122:2405–2413

    Article  CAS  PubMed  Google Scholar 

  • Wallner K, Li C, Shah PK, Fishbein MC, Forrester JS, Kaul S, Sharifi BG (1999) Tenascin-C is expressed in macrophage-rich human coronary atherosclerotic plaque. Circulation 99:1284–1289

    CAS  PubMed  Google Scholar 

  • Weis M, von Scheidt W (1997) Cardiac allograft vasculopathy: a review. Circulation 96:2069–2077

    CAS  PubMed  Google Scholar 

  • Willems IE, Arends JW, Daemen MJ (1996) Tenascin and fibronectin expression in healing human myocardial scars. J Pathol 179:321–325

    Article  CAS  PubMed  Google Scholar 

  • Yamani MH, Yousufuddin M, Starling RC, Tuzcu M, Ratliff NB, Cook DJ, Abdo A, Crowe T, Hobbs R, Rincon G, Bott-Silverman C, McCarthy PM, Young JB (2004) Does acute cellular rejection correlate with cardiac allograft vasculopathy? J Heart Lung Transplant 23:272–276

    Article  PubMed  Google Scholar 

  • Yokoyama H, Ohmi M, Murata S, Nakame T, Tabayashi K, Mohri H (1995) Proposal of a working left heart model with a heterotopic transplantation technique in rats. J Heart Lung Transplant 14:706–712

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Katrin Hornung and Claudia Seliger for excellent technical assistance. The research leading to the results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. Health-F2-2008-201342 (ADAMANT).

Conflict of interest

Dario Neri is a co-founder and shareholder of Philogen, the company which owns the rights over the F8 antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Franz.

Additional information

M. Franz and K. Grün contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franz, M., Grün, K., Richter, P. et al. Extra cellular matrix remodelling after heterotopic rat heart transplantation: gene expression profiling and involvement of ED-A+ fibronectin, alpha-smooth muscle actin and B+ tenascin-C in chronic cardiac allograft rejection. Histochem Cell Biol 134, 503–517 (2010). https://doi.org/10.1007/s00418-010-0750-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0750-6

Keywords

Navigation