Skip to main content

Advertisement

Log in

Lipid glycosylation: a primer for histochemists and cell biologists

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Glycolipids are glycoconjugates that are predominantly found on the extracellular surface of cells ranging from bacteria to men. In bacteria and plants, glycoglycerolipids represent the main glycolipid species. Ceramides as carrier for glycans, termed glycosphingolipids (GSLs), are characteristic for vertebrates and insects. The glycan part is involved in a variety of biological activities including cell adhesion and initiation of signaling. Most of these functions rest on two basic principles: (1) GSLs spontaneously contribute to organize lipid rafts in biological membranes, thereby forming functional complexes (‘glycosynapses’) with receptor proteins and ion channels and (2) their glycans are bound by receptors like galectins (protein–glycan recognition) or cognate glycans (glycan–glycan recognition). This interaction modulates cell adhesion, differentiation and growth processes. Besides their contribution to normal cell behavior, GSL expression patterns also influence disease processes by inducing cellular malfunctions when aberrant, as highlighted by inherited disorders of GSL metabolism like sphingolipidoses. Altered GSL patterns are also associated with common neurological diseases, autoimmune diseases and cancer. With respect to infections, various GSL-presented glycans are attachment sites for bacteria and viruses as well as primary targets for bacterial toxins. This review provides an introduction to GSL structures, their nomenclature and metabolism. Building on this, normal and pathological functions of GSL will be surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abstracted from Ledeen et al. (2012), with permission

Fig. 6

Adapted from Kopitz (2009)

Fig. 7

Adapted from Kopitz (2009)

Fig. 8

Adapted from Kopitz (2009)

Fig. 9

Abstracted from Ledeen et al. (2012), with permission

Similar content being viewed by others

References

  • Abad-Rodríguez J, Díez-Revuelta N (2015) Axon glycoprotein routing in nerve polarity, function, and repair. Trends Biochem Sci 40:385–396

    Article  PubMed  CAS  Google Scholar 

  • Adams CW, Bayliss OB (1963) Histochemical observations on the localisation and origin of sphingomyelin, cerebroside and cholesterol in the normal and atherosclerotic human artery. J Pathol Bacteriol 85:113–119

    Article  CAS  PubMed  Google Scholar 

  • Ahmed M, Cheung NK (2014) Engineering anti-GD2 monoclonal antibodies for cancer immunotherapy. FEBS Lett 588:288–297

    Article  CAS  PubMed  Google Scholar 

  • Akiyoshi K, Itaya A, Nomura S, Ono N, Yoshikawa K (2003) Induction of neuron-like tubes and liposome networks by cooperative effect of gangliosides and phospholipids. FEBS Lett 534:33–38

    Article  CAS  PubMed  Google Scholar 

  • Alroy J, Ucci AA, Goyal V, Woods W (1986) Lectin histochemistry of glycolipid storage diseases on frozen and paraffin-embedded tissue sections. J Histochem Cytochem 34:501–505

    Article  CAS  PubMed  Google Scholar 

  • Amano M, Eriksson H, Manning JC, Detjen KM, André S, Nishimura S, Lehtiö J, Gabius HJ (2012) Tumour suppressor p16INK4a: anoikis-favouring decrease in N/O-glycan/cell surface sialylation by down-regulation of enzymes in sialic acid biosynthesis in tandem in a pancreatic carcinoma model. FEBS J 279:4062–4080

    Article  CAS  PubMed  Google Scholar 

  • André S, Kaltner H, Lensch M, Russwurm R, Siebert HC, Fallsehr C, Tajkhorshid E, Heck AJ, Knebel Doeberitz M, Gabius HJ, Kopitz J (2005) Determination of structural and functional overlap/divergence of five proto-type galectins by analysis of the growth-regulatory interaction with ganglioside GM1 in silico and in vitro on human neuroblastoma cells. Int J Cancer 114:46–57

    Article  PubMed  CAS  Google Scholar 

  • André S, Sanchez-Ruderisch H, Nakagawa H, Buchholz M, Kopitz J, Forberich P, Kemmner W, Bock C, Deguchi K, Detjen KM, Wiedenmann B, von Knebel Doeberitz M, Gress TM, Nishimura S, Rosewicz S, Gabius HJ (2007) Tumor suppressor p16INK4a: modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells. FEBS J 274:3233–3256

    Article  PubMed  CAS  Google Scholar 

  • André S, Kopitz J, Kaltner H, Villalobo HA, Gabius HJ (2009) Glycans as functional markers in malignancy. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 419–432

    Google Scholar 

  • André S, Kaltner H, Kayser K, Murphy PV, Gabius HJ (2016) Merging carbohydrate chemistry with lectin histochemistry to study inhibition of lectin binding by glycoclusters in the natural tissue context. Histochem Cell Biol 145:185–199

    Article  PubMed  CAS  Google Scholar 

  • Ariga T, Kubota M, Nakane M, Oguro K, Yu RK, Ando S (2013) Anti-Chol-1 antigen, GQ1bα, antibodies are associated with Alzheimer’s disease. PLoS ONE 8:e63326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asensio JL, Espinosa JF, Dietrich H, Cañada FJ, Schmidt RR, Martín-Lomas M, André S, Gabius H-J, Jiménez-Barbero J (1999) Bovine heart galectin-1 selects a distinct (syn) conformation of C-lactose, a flexible lactose analogue. J Am Chem Soc 121:8995–9000

    Article  CAS  Google Scholar 

  • Bhide GP, Colley KJ (2017) Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1520-x

  • Bhunia A, Vivekanandan S, Eckert T, Burg-Roderfeld M, Wechselberger R, Romanuka J, Bachle D, Kornilov AV, von der Lieth CW, Jimenez-Barbero J, Nifantiev NE, Schachner M, Sewald N, Lütteke T, Gabius HJ, Siebert HC (2010) Why structurally different cyclic peptides can be glycomimetics of the HNK-1 carbohydrate antigen. J Am Chem Soc 132:96–105

    Article  CAS  PubMed  Google Scholar 

  • Binz T, Rummel A (2009) Cell entry strategy of clostridial neurotoxins. J Neurochem 109(6):1584–1595

    Article  CAS  PubMed  Google Scholar 

  • Bleeke M, Fest S, Huebener N, Landgraf C, Schraven B, Gaedicke G, Volkmer R, Lode HN (2009) Systematic amino acid substitutions improved efficiency of GD2-peptide mimotope vaccination against neuroblastoma. Eur J Cancer 45:2915–2921

    Article  CAS  PubMed  Google Scholar 

  • Bodian M, Lake BD (1963) The rectal approach to neuropathology. Br J Surg 50:702–714

    Article  CAS  PubMed  Google Scholar 

  • Boukhris A, Schule R, Loureiro JL, Lourenco CM, Mundwiller E, Gonzalez MA, Charles P, Gauthier J, Rekik I, Acosta Lebrigio RF, Gaussen M, Speziani F, Ferbert A, Feki I, Caballero-Oteyza A, Dionne-Laporte A, Amri M, Noreau A, Forlani S, Cruz VT, Mochel F, Coutinho P, Dion P, Mhiri C, Schols L, Pouget J, Darios F, Rouleau GA, Marques W Jr, Brice A, Durr A, Zuchner S, Stevanin G (2013) Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. Am J Hum Genet 93:118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bovin N (1997) Carbohydrate-carbohydrate interaction. In: Gabius HJ, Gabius S (eds) Glycosciences: status and perspectives. Chapman & Hall, Weinheim, pp 277–290

    Google Scholar 

  • Brady RO (2006) Enzyme replacement for lysosomal diseases. Annu Rev Med 57:283–296

    Article  CAS  PubMed  Google Scholar 

  • Brockhausen I, Schachter H (1997) Glycosyltransferases involved in N- and O-glycan biosynthesis. In: Gabius HJ, Gabius S (eds) Glycosciences: status and perspectives. Chapman & Hall, Weinheim, pp 79–114

    Google Scholar 

  • Brown D (2002) Structure and function of membrane rafts. Int J Med Microbiol 291(6–7):433–437

    CAS  PubMed  Google Scholar 

  • Bucior I, Burger M, Fernandez-Busquets X (2009) Carbohydrate-carbohydrate interactions. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 347–362

    Google Scholar 

  • Buddecke E (2009) Proteoglycans. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 199–216

    Google Scholar 

  • Cacic M, Müthing J, Kracun I, Neumann U, Weber-Schurholz S (1994) Expression of neutral glycosphingolipids and gangliosides in human skeletal and heart muscle determined by indirect immunofluorescence staining. Glycoconj J 11:477–485

    Article  CAS  PubMed  Google Scholar 

  • Cacic M, Sostaric K, Weber-Schurholz S, Müthing J (1995) Immunohistological analyses of neutral glycosphingolipids and gangliosides in normal mouse skeletal muscle and in mice with neuromuscular diseases. Glycoconj J 12:721–728

    Article  CAS  PubMed  Google Scholar 

  • Caldwell S, Heitger A, Shen W, Liu Y, Taylor B, Ladisch S (2003) Mechanisms of ganglioside inhibition of APC function. J Immunol 171:1676–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caselitz J (1987) Lectins and blood group substances as tumor markers. Curr Top Pathol 77:245–277

    Article  CAS  PubMed  Google Scholar 

  • Chapman J, Sela BA, Wertman E, Michaelson DM (1988) Antibodies to ganglioside GM1 in patients with Alzheimer’s disease. Neurosci Lett 86:235–240

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Wang M, Li JL, Cairns NJ, Han X (2013) Specific changes of sulfatide levels in individuals with pre-clinical Alzheimer’s disease: an early event in disease pathogenesis. J Neurochem 127:733–738

    Article  CAS  PubMed  Google Scholar 

  • Chester MA (1998) IUPAC-IUB joint commission on biochemical nomenclature (JCBN). Nomenclature of glycolipids:recommendations 1997. Eur J Biochem 257:293–298

    Article  CAS  PubMed  Google Scholar 

  • Corfield AP (2017) Protein glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1526-4

  • Corfield A, Berry M (2015) Glycan variation and evolution in the eukaryotes. Trends Biochem Sci 40:351–359

    Article  CAS  PubMed  Google Scholar 

  • Dalakas MC (2015) Pathogenesis of immune-mediated neuropathies. Biochim Biophys Acta 1852:658–666

    Article  CAS  PubMed  Google Scholar 

  • Danguy A, Akif F, Pajak B, Gabius HJ (1994) Contribution of carbohydrate histochemistry to glycobiology. Histol Histopathol 9:155–171

    CAS  PubMed  Google Scholar 

  • Danguy A, Camby I, Salmon I, Kiss R (1997) Modern glycohistochemistry: a major contribution to morphological changes. In: Gabius HJ, Gabius S (eds) Glycosciences: status and perspectives. Chapman & Hall, Weinheim, pp 547–562

    Google Scholar 

  • Daniotti JL, Lardone RD, Vilcaes AA (2015) Dysregulated expression of glycolipids in tumor cells: from negative modulator of anti-tumor immunity to promising targets for developing therapeutic agents. Front Oncol 5:300

    PubMed  Google Scholar 

  • Dawson H, André S, Karamitopoulou E, Zlobec I, Gabius HJ (2013) The growing galectin network in colon cancer and clinical relevance of cytoplasmic galectin-3 reactivity. Anticancer Res 33:3053–3059

    CAS  PubMed  Google Scholar 

  • Degroote S, Wolthoorn J, van Meer G (2004) The cell biology of glycosphingolipids. Semin Cell Dev Biol 15:375–387

    Article  CAS  PubMed  Google Scholar 

  • Delacour D, Gouyer V, Zanetta JP, Drobecq H, Leteurtre E, Grard G, Moreau-Hannedouche O, Maes E, Pons A, André S, Le Bivic A, Gabius HJ, Manninen A, Simons K, Huet G (2005) Galectin-4 and sulfatides in apical membrane trafficking in enterocyte-like cells. J Cell Biol 169:491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denny CA, Desplats PA, Thomas EA, Seyfried TN (2010) Cerebellar lipid differences between R6/1 transgenic mice and humans with Huntington’s disease. J Neurochem 115:748–758

    Article  CAS  PubMed  Google Scholar 

  • Desplats PA, Denny CA, Kass KE, Gilmartin T, Head SR, Sutcliffe JG, Seyfried Thomas EA (2007) Glycolipid and ganglioside metabolism imbalances in Huntington’s disease. Neurobiol Dis 27:265–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Pardo A, Amico E, Maglione V (2016) Impaired levels of gangliosides in the Corpus Callosum of Huntington Disease animal models. Front Neurosci 10:457

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz-Rohrer B, Levental KR, Levental I (2014) Rafting through traffic: membrane domains in cellular logistics. Biochim Biophys Acta 1838:3003–3013

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Ikeda K, Hamamura K, Zhang Q, Kondo Y, Matsumoto Y, Ohmi Y, Yamauchi Y, Furukawa K, Taguchi R, Furukawa K (2010) GM1/GD1b/GA1 synthase expression results in the reduced cancer phenotypes with modulation of composition and raft-localization of gangliosides in a melanoma cell line. Cancer Sci 101:2039–2047

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Liu Y, Colberg-Poley AM, Kaucic K, Ladisch S (2011) Induction of GM1a/GD1b synthase triggers complex ganglioside expression and alters neuroblastoma cell behavior; a new tumor cell model of ganglioside function. Glycoconj J 28:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert V, Gerold P, Schwarz R (1997) GPI-anchors: structure and functions. In: Gabius HJ, Gabius S (eds) Glycosciences: status and perspectives. Chapman & Hall, Weinheim, pp 223–243

    Google Scholar 

  • Ewers H, Helenius A (2011) Lipid-mediated endocytosis. Cold Spring Harb Perspect Biol 3:a004721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fahie K, Zachara NE (2016) Molecular functions of glycoconjugates in autophagy. J Mol Biol 428:3305–3324

    Article  CAS  PubMed  Google Scholar 

  • Fantini J, Maresca M, Hammache D, Yahi N, Delezay O (2000) Glycosphingolipid (GSL) microdomains as attachment platforms for host pathogens and their toxins on intestinal epithelial cells: activation of signal transduction pathways and perturbations of intestinal absorption and secretion. Glycoconj J 17:173–179

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA (1981) Metabolism of sulfolipids in mammalian tissues. Adv Lipid Res 18:159–202

    Article  CAS  PubMed  Google Scholar 

  • Fragaki K, Ait-El-Mkadem S, Chaussenot A, Gire C, Mengual R, Bonesso L, Beneteau M, Ricci JE, Desquiret-Dumas V, Procaccio V, Rotig A, Paquis-Flucklinger V (2013) Refractory epilepsy and mitochondrial dysfunction due to GM3 synthase deficiency. Eur J Hum Genet 21:528–534

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Hamamura K, Ohkawa Y, Ohmi Y, Furukawa K (2012) Disialyl gangliosides enhance tumor phenotypes with differential modalities. Glycoconj J 29:579–584

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Ohkawa Y, Matsumoto Y, Ohmi Y, Hashimoto N, Furukawa K (2016) Regulatory mechanisms of malignant properties of cancer cells with disialyl and monosialyl gangliosides. In: Furukawa K, Fukuda M (eds) Glycosignals in cancer: mechanisms of malignant phenotypes. Springer, Tokyo, pp 57–76

    Chapter  Google Scholar 

  • Gabius HJ (1997) Animal lectins. Eur J Biochem 243:543–576

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J (1998) The how and why of protein–carbohydrate interaction: a primer to the theoretical concept and a guide to application in drug design. Pharm Res 15:23–30

    Article  CAS  PubMed  Google Scholar 

  • Gabius HJ (2002) Animal lectins and life: a guided tour into the realm of the sugar code. Biochim Biophys Acta 1572:163–164

    Article  CAS  Google Scholar 

  • Gabius HJ (2009) Animal and human lectins. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 317–328

    Google Scholar 

  • Gabius HJ (2015) The magic of the sugar code. Trends Biochem Sci 40:341

    Article  CAS  PubMed  Google Scholar 

  • Gabius HJ, Kayser K (2014) Introduction to glycopathology: the concept, the tools and the perspectives. Diagn Pathol 9:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gabius H-J, Roth J (2017) An introduction to the sugar code. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1521-9

  • Gabius HJ, Wosgien B, Hendrys M, Bardosi A (1991) Lectin localization in human nerve by biochemically defined lectin-binding glycoproteins, neoglycoprotein and lectin-specific antibody. Histochemistry 95:269–277

    Article  CAS  PubMed  Google Scholar 

  • Gabius HJ, André S, Kaltner H, Siebert HC (2002) The sugar code: functional lectinomics. Biochim Biophys Acta 1572:165–177

    Article  CAS  PubMed  Google Scholar 

  • Gabius H-J, André S, Jiménez-Barbero J, Romero A, Solís D (2011) From lectin structure to functional glycomics: principles of the sugar code. Trends Biochem Sci 36:298–313

    Article  CAS  PubMed  Google Scholar 

  • Gabius HJ, Kaltner H, Kopitz J, André S (2015) The glycobiology of the CD system: a dictionary for translating marker designations into glycan/lectin structure and function. Trends Biochem Sci 40:360–376

    Article  CAS  PubMed  Google Scholar 

  • Gabius HJ, Manning JC, Kopitz J, André S, Kaltner H (2016) Sweet complementarity: the functional pairing of glycans with lectins. Cell Mol Life Sci 73:1989–2016

    Article  CAS  PubMed  Google Scholar 

  • García Caballero G, Kaltner H, Michalak M, Shilova N, Yegres M, André S, Ludwig AK, Manning JC, Schmidt S, Schnölzer M, Bovin NV, Reusch D, Kopitz J, Gabius HJ (2016) Chicken GRIFIN: a homodimeric member of the galectin network with canonical properties and a unique expression profile. Biochimie 128–129:34–47

    Article  PubMed  CAS  Google Scholar 

  • Gebert J, Kloor M, Lee J, Lohr M, André S, Wagner R, Kopitz J, Gabius HJ (2012) Colonic carcinogenesis along different genetic routes: glycophenotyping of tumor cases separated by microsatellite instability/stability. Histochem Cell Biol 138:339–350

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow JA, Willison HJ (2016) Antiganglioside, antiganglioside-complex, and antiglycolipid-complex antibodies in immune-mediated neuropathies. Curr Opin Neurol 29:572–580

    Article  CAS  PubMed  Google Scholar 

  • Grassi S, Prioni S, Cabitta L, Aureli M, Sonnino S, Prinetti A (2016) The role of 3-O-sulfogalactosylceramide, sulfatide, in the lateral organization of myelin membrane. Neurochem Res 41:130–143

    Article  CAS  PubMed  Google Scholar 

  • Gueguinou M, Gambade A, Felix R, Chantome A, Fourbon Y, Bougnoux P, Weber G, Potier-Cartereau M, Vandier C (2015) Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: novel targets to reduce tumor development by lipids? Biochim Biophys Acta 1848:2603–2620

    Article  CAS  PubMed  Google Scholar 

  • Gupta G, Surolia A (2010) Glycosphingolipids in microdomain formation and their spatial organization. FEBS Lett 584:1634–1641

    Article  CAS  PubMed  Google Scholar 

  • Hadaczek P, Wu G, Sharma N, Ciesielska A, Bankiewicz K, Davidow AL, Lu ZH, Forsayeth J, Ledeen RW (2015) GDNF signaling implemented by GM1 ganglioside: failure in Parkinson’s disease and GM1-deficient murine model. Exp Neurol 263:177–189

    Article  CAS  PubMed  Google Scholar 

  • Hakomori SI (1998) Cancer-associated glycosphingolipid antigens: their structure, organization, and function. Acta Anat 161:79–90

    Article  CAS  PubMed  Google Scholar 

  • Hakomori SI (2002) The glycosynapse. Proc Natl Acad Sci USA 99:225–232

    Article  CAS  PubMed Central  Google Scholar 

  • Hakomori SI, Handa K (2016) Regulation of growth factor receptors by glycosphingolipids. In: Furukawa K, Fukuda M (eds) Glycosignals in cancer: mechanisms of malignant phenotypes. Springer, Tokyo, pp 77–94

    Chapter  Google Scholar 

  • Han X, McKeel DW, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818

    Article  CAS  PubMed  Google Scholar 

  • Harlalka GV, Lehman A, Chioza B, Baple EL, Maroofian R, Cross H, Sreekantan-Nair A, Priestman AD, Al-Turki S, McEntagart ME, Proukakis C, Royle L, Kozak RP, Bastaki L, Patton M, Wagner K, Coblentz R, Price J, Mezei M, Schlade-Bartusiak K, Platt FM, Hurles ME, Crosby AH (2013) Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis. Brain 136:3618–3624

    Article  PubMed  PubMed Central  Google Scholar 

  • Helms JB, Zurzolo C (2004) Lipids as targeting signals: lipid rafts and intracellular trafficking. Traffic 5:247–254

    Article  CAS  PubMed  Google Scholar 

  • Hennet T (2009) Diseases of glycosylation. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 365–384

    Google Scholar 

  • Hennet T, Cabalzar J (2015) Congenital disorders of glycosylation: a concise chart of glycocalyx dysfunction. Trends Biochem Sci 40:377–384

    Article  CAS  PubMed  Google Scholar 

  • Higuero AM, Díez-Revuelta N, Abad-Rodríguez J (2017) The sugar code in neuronal physiology. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1519-3

  • Hiraiwa N, Tsuyuoka K, Li YT, Tanaka M, Seno T, Okubo Y, Fukuda Y, Imura H, Kannagi R (1990) Gangliosides and sialoglycoproteins carrying a rare blood group antigen determinant, Cad, associated with human cancers as detected by specific monoclonal antibodies. Cancer Res 50:5497–5503

    CAS  PubMed  Google Scholar 

  • Holländer H (1963) A staining method for cerebroside-sulphuric esters in brain tissue. J Histochem Cytochem 11:112–118

    Article  Google Scholar 

  • Holzl G, Dormann P (2007) Structure and function of glycoglycerolipids in plants and bacteria. Prog Lipid Res 46:225–243

    Article  PubMed  CAS  Google Scholar 

  • Honigmann A, Pralle A (2016) Compartmentalization of the cell membrane. J Mol Biol 428:4739

    Article  CAS  PubMed  Google Scholar 

  • Horejsi V, Hrdinka M (2014) Membrane microdomains in immunoreceptor signaling. FEBS Lett 588:2392–2397

    Article  CAS  PubMed  Google Scholar 

  • Hwang J, Lee S, Lee JT, Kwon TK, Kim DR, Kim H, Park HC, Suk K (2010) Gangliosides induce autophagic cell death in astrocytes. Br J Pharmacol 159:586–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iida N, Toida T, Kushi Y, Handa S, Fredman P, Svennerholm L, Ishizuka I (1989) A sulfated glucosylceramide from rat kidney. J Biol Chem 264:5974–5980

    CAS  PubMed  Google Scholar 

  • Ilyas AA, Quarles RH, Brady RO (1984) The monoclonal antibody HNK-1 reacts with a human peripheral nerve ganglioside. Biochem Biophys Res Commun 122:1206–1211

  • Ishizuka I (1997) Chemistry and functional distribution of sulfoglycolipids. Prog Lipid Res 36:245–319

    Article  CAS  PubMed  Google Scholar 

  • Itokazu Y, Tsai YT, Yu RK (2016) Epigenetic regulation of ganglioside expression in neural stem cells and neuronal cells. Glycoconj J. doi:10.1007/s10719-016-9719-6

  • Jones M (2008) Lipids. In: Bancroft J, Gamble M (eds) Theory and practice of histological techniques. Elsevier, Amsterdam, pp 187–216

    Chapter  Google Scholar 

  • Kalka D, von Reitzenstein C, Kopitz J, Cantz M (2001) The plasma membrane ganglioside sialidase cofractionates with markers of lipid rafts. Biochem Biophys Res Commun 283:989–993

    Article  CAS  PubMed  Google Scholar 

  • Kaltner H, Gabius HJ (2012) A toolbox of lectins for translating the sugar code: the galectin network in phylogenesis and tumors. Histol Histopathol 27:397–416

    CAS  PubMed  Google Scholar 

  • Kaltner H, Singh T, Manning JC, Raschta A-S, André S, Sinowatz F, Gabius H-J (2015) Network monitoring of adhesion/growth-regulatory galectins: localization of the five canonical chicken proteins in embryonic and maturing bone and cartilage and their introduction as histochemical tools. Anat Rec 298:2051–2070

    Article  CAS  Google Scholar 

  • Kaltner H, García Caballero G, Sinowatz F, Schmidt S, Manning JC, André S, Gabius HJ (2016) Galectin-related protein: an integral member of the network of chicken galectins. 2. From expression profiling to its immunocyto- and histochemical localization and application as tool for ligand detection. Biochim Biophys Acta 1860:2298–2312

    Article  CAS  PubMed  Google Scholar 

  • Kaltner H, Toegel S, García Caballero G, Manning JC, Ledeen RW, Gabius HJ (2017) Galectins: their network and roles in immunity/tumor growth control. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1522-8

  • Kaneko T, Tsubakihara Y, Fushimi H, Yamaguchi S, Takabatake Y, Rakugi H, Kawakami H, Isaka Y (2015) Histochemical and immunoelectron microscopic analysis of ganglioside GM3 in human kidney. Clin Exp Nephrol 19:403–410

    Article  CAS  PubMed  Google Scholar 

  • Karlsson KA (1989) Animal glycosphingolipids as membrane attachment sites for bacteria. Annu Rev Biochem 58:309–350

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Sasakawa H, Kamiya Y, Utsumi M, Nakano M, Takahashi N, Yamaguchi Y (2008) 920 MHz ultra-high field NMR approaches to structural glycobiology. Biochim Biophys Acta 1780:619–625

    Article  CAS  PubMed  Google Scholar 

  • Katzenmaier EM, André S, Kopitz J, Gabius HJ (2014) Impact of sodium butyrate on the network of adhesion/growth-regulatory galectins in human colon cancer in vitro. Anticancer Res 34:5429–5438

    CAS  PubMed  Google Scholar 

  • Kawashima I, Tai T (1998) An immunocytochemical technique with monoclonal antibodies to glycosphingolipids in rat primary cerebellar cultures: influence of detergent permeabilization. Brain Res Protoc 2:299–305

    Article  CAS  Google Scholar 

  • Kawashima I, Ozawa H, Kotani M, Suzuki M, Kawano T, Gomibuchi M, Tai T (1993) Characterization of ganglioside expression in human melanoma cells: immunological and biochemical analysis. J Biochem 114:186–193

    CAS  PubMed  Google Scholar 

  • Kimata H, Yoshida A (1994) Differential effects of gangliosides on Ig production and proliferation by human B cells. Blood 84:1193–1200

    CAS  PubMed  Google Scholar 

  • Kopitz J (1997) Glycolipids: structure and function. In: Gabius HJ, Gabius S (eds) Glycosciences: status and perspectives. Chapman & Hall, Weinheim, pp 163–180

    Google Scholar 

  • Kopitz J (2009) Glycolipids. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 177–198

    Google Scholar 

  • Kopitz J, von Reitzenstein C, Sinz K, Cantz M (1996) Selective ganglioside desialylation in the plasma membrane of human neuroblastoma cells. Glycobiology 6:367–376

    Article  CAS  PubMed  Google Scholar 

  • Kopitz J, Mühl C, Ehemann V, Lehmann C, Cantz M (1997) Effects of cell surface ganglioside sialidase inhibition on growth control and differentiation of human neuroblastoma cells. Eur J Cell Biol 73:1–9

  • Kopitz J, Bergmann M, Gabius HJ (2010) How adhesion/growth-regulatory galectins-1 and -3 attain cell specificity: case study defining their target on neuroblastoma cells (SK-N-MC) and marked affinity regulation by affecting microdomain organization of the membrane. IUBMB Life 62:624–628

  • Kopitz J, von Reitzenstein C, Burchert M, Cantz M, Gabius HJ (1998) Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cells in culture. J Biol Chem 273:11205–11211

    Article  CAS  PubMed  Google Scholar 

  • Kopitz J, von Reitzenstein C, André S, Kaltner H, Uhl J, Ehemann V, Cantz M, Gabius HJ (2001) Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J Biol Chem 276:35917–35923

    Article  CAS  PubMed  Google Scholar 

  • Kopitz J, André S, von Reitzenstein C, Versluis K, Kaltner H, Pieters RJ, Wasano K, Kuwabara I, Liu FT, Cantz M, Heck AJ, Gabius HJ (2003) Homodimeric galectin-7 (p53-induced gene 1) is a negative growth regulator for human neuroblastoma cells. Oncogene 18:6277–6288

    Article  CAS  Google Scholar 

  • Kopitz J, Ballikaya S, André S, Gabius HJ (2012) Ganglioside GM1/galectin-dependent growth regulation in human neuroblastoma cells: special properties of bivalent galectin-4 and significance of linker length for ligand selection. Neurochem Res 34:1267–1276

    Article  CAS  Google Scholar 

  • Kopitz J, Vértesy S, André S, Fiedler S, Schnölzer M, Gabius HJ (2014) Human chimera-type galectin-3: defining the critical tail length for high-affinity glycoprotein/cell surface binding and functional competition with galectin-1 in neuroblastoma cell growth regulation. Biochimie 104:90–99

    Article  CAS  PubMed  Google Scholar 

  • Koscielak J, Miller-Podraza H, Krauze R, Piasek A (1976) Isolation and characterization of poly(glycosyl)ceramides (megaloglycolipids) with A, H and I blood-group activities. Eur J Biochem 71:9–18

    Article  CAS  PubMed  Google Scholar 

  • Kotani M, Tai T (1997) An immunohistochemical technique with a series of monoclonal antibodies to gangliosides: their differential distribution in the rat cerebellum. Brain Res Brain Res Protoc 1:152–156

    Article  CAS  PubMed  Google Scholar 

  • Kovacic N, Muthing J, Marusic A (2000) Immunohistological and flow cytometric analysis of glycosphingolipid expression in mouse lymphoid tissues. J Histochem Cytochem 48:1677–1690

    Article  CAS  PubMed  Google Scholar 

  • Kozireski-Chuback D, Wu G, Ledeen RW (1999) Developmental appearance of nuclear GM1 in neurons of the central and peripheral nervous systems. Dev Brain Res 115:201–208

    Article  CAS  Google Scholar 

  • Kubo S, Hatano T, Hattori N (2015) Lipid rafts involvement in the pathogenesis of Parkinson’s disease. Front Biosci 20:263–279

    Article  Google Scholar 

  • Kusunoki S, Kaida K (2011) Antibodies against ganglioside complexes in Guillain–Barre syndrome and related disorders. J Neurochem 116:828–832

    Article  CAS  PubMed  Google Scholar 

  • Lauc G, Heffer-Lauc M (2006) Shedding and uptake of gangliosides and glycosylphosphatidylinositol-anchored proteins. Biochim Biophys Acta 1760:584–602

    Article  CAS  PubMed  Google Scholar 

  • Ledeen RW (1984) Biology of gangliosides: neuritogenic and neuronotrophic properties. J Neurosci Res 12:147–159

    Article  CAS  PubMed  Google Scholar 

  • Ledeen RW (1987) The neuritogenic effect of gangliosides in cell cultures. In: Rahmann H (ed) Gangliosides and modulation of neuronal functions. Springer, Berlin, pp 491–500

    Chapter  Google Scholar 

  • Ledeen RW (1989) Biosynthesis, metabolism, and biological effects of gangliosides. In: Margolis RK, Margolis RU (eds) Neurobiology of glycoconjugates. Plenum Press, New York, pp 43–83

    Chapter  Google Scholar 

  • Ledeen RW, Wu G (2009) Neurobiology meets glycosciences. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 495–516

    Google Scholar 

  • Ledeen RW, Wu G (2011) New findings on nuclear gangliosides: overview on metabolism and function. J Neurochem 116:714–720

    Article  CAS  PubMed  Google Scholar 

  • Ledeen RW, Wu G (2015) The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 40:407–418

    Article  CAS  PubMed  Google Scholar 

  • Ledeen RW, Yu RK (1982) Gangliosides: structure, isolation, and analysis. Methods Enzymol 83:139–191

    Article  CAS  PubMed  Google Scholar 

  • Ledeen RW, Wu G, André Bleich D, Huet G, Kaltner H, Kopitz J, Gabius HJ (2012) Beyond glycoproteins as galectin counterreceptors: tumor-effector T cell growth control via ganglioside GM1. Ann N Y Acad Sci 1253:206–221

    Article  CAS  PubMed  Google Scholar 

  • Legros N, S. Dusny S, Humpf HU, Pohlentz G, H. Karch H, Müthing J (2016) Shiga toxin glycosphingolipid receptors and their lipid membrane ensemble in primary human blood-brain barrier endothelial cells. Glycobiology. doi:10.1093/glycob/cww090

  • Levental I, Veatch SL (2016) The continuing mystery of lipid rafts. J Mol Biol. doi:10.1016/j.jmb.2016.08.022

  • Levery SB (2005) Glycosphingolipid structural analysis and glycosphingolipidomics. Methods Enzymol 405:300–369

    Article  CAS  PubMed  Google Scholar 

  • Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50

    Article  CAS  PubMed  Google Scholar 

  • Lode HN, Schmidt M, Seidel D, Huebener N, Brackrock D, Bleeke M, Reker D, Brandt S, Mueller HP, Helm C, Siebert N (2013) Vaccination with anti-idiotype antibody ganglidiomab mediates a GD2-specific anti-neuroblastoma immune response. Cancer Immunol Immunother 62:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Lohr M, Kaltner H, Schwartz-Albiez R, Sinowatz F, Gabius HJ (2010) Towards functional glycomics by lectin histochemistry: strategic probe selection to monitor core and branch-end substitutions and detection of cell-type and regional selectivity in adult mouse testis and epididymis. Anat Histol Embryol 39:481–493

    Article  CAS  PubMed  Google Scholar 

  • Ludwig AK, Vértesy S, Michalak M, Manning JC, André S, Kübler D, Kopitz J, Kaltner H, Gabius HJ (2016) Playing modular puzzle with adhesion/growth-regulatory galectins: design and testing of a hybrid to unravel structure–activity relationships. Protein Pept Lett 23:1003–1012

    Article  CAS  PubMed  Google Scholar 

  • Maccioni HJ, Giraudo CG, Daniotti JL (2002) Understanding the stepwise synthesis of glycolipids. Neurochem Res 27:629–636

    Article  CAS  PubMed  Google Scholar 

  • Majewski J, André S, Jones E, Chi E, Gabius HJ (2015) X-ray reflectivity and grazing incidence diffraction studies of interaction between human adhesion/growth-regulatory galectin-1 and DPPE-GM1 lipid monolayer at an air/water interface. Biochemistry (Moscow) 80:943–956

    Article  CAS  Google Scholar 

  • Manning JC, Romero A, Habermann F, García Caballero G, Kaltner H, Gabius HJ (2017) Lectins: a primer for histochemists and cell biologists. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1524-6

  • Marcus J, Popko B (2002) Galactolipids are molecular determinants of myelin development and axo-glial organization. Biochim Biophys Acta 1573:406–413

    Article  CAS  PubMed  Google Scholar 

  • Martinez Z, Zhu M, Han S, Fink AL (2007) GM1 specifically interacts with α-synuclein and inhibits fibrillation. Biochemistry 46:1868–1877

    Article  CAS  PubMed  Google Scholar 

  • Matarrese P, Garofalo T, Manganelli V, Gambardella L, Marconi M, Grasso M, Tinari A, Misasi R, Malorni W, Sorice M (2014) Evidence for the involvement of GD3 ganglioside in autophagosome formation and maturation. Autophagy 10:750–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matrosovich M, Herrler G, Klenk HD (2015) Sialic acid receptors of viruses. Top Curr Chem 367:1–28

    Article  CAS  PubMed  Google Scholar 

  • Mayer S, Raulf MK, Lepenies B (2017) C-type lectins: their network and roles in immunity/pathogen recognition. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1523-7

  • Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111:6387–6422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrill AH Jr, Sullards MC, Allegood JC, Kelly S, Wang E (2005) Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 36:207–224

    Article  CAS  PubMed  Google Scholar 

  • Miura R, Ethell IM, Yamaguchi Y (2001) Carbohydrate-protein interactions between HNK-1-reactive sulfoglucuronyl glycolipids and the proteoglycan lectin domain mediate neuronal cell adhesion and neurite outgrowth. J Neurochem 76:413–424

    Article  CAS  PubMed  Google Scholar 

  • Miyagi T, Takahashi K, Shiozaki K, Yamaguchi K, Hosono M (2015) Plasma membrane-associated sialidase confers cancer initiation, promotion and progression. Adv Exp Med Biol 842:139–145

    Article  PubMed  Google Scholar 

  • Miyake M, Hashimoto K, Ito M, Ogawa O, Arai E, Hitomi S, Kannagi R (1990) The abnormal occurrence and the differentiation-dependent distribution of N-acetyl and N-glycolyl species of the ganglioside GM2 in human germ cell tumors. A study with specific monoclonal antibodies. Cancer 65:499–505

    Article  CAS  PubMed  Google Scholar 

  • Morales A, Colell A, Mari M, Garcia-Ruiz C, Fernandez-Checa JC (2004) Glycosphingolipids and mitochondria: role in apoptosis and disease. Glycoconj J 20:579–588

    Article  CAS  PubMed  Google Scholar 

  • Muanprasat C, Chatsudthipong V (2013) Cholera: pathophysiology and emerging therapeutic targets. Future Med Chem 5:781–798

    Article  CAS  PubMed  Google Scholar 

  • Murphy PV, André S, Gabius H-J (2013) The third dimension of reading the sugar code by lectins: design of glycoclusters with cyclic scaffolds as tools with the aim to define correlations between spatial presentation and activity. Molecules 18:4026–4053

    Article  CAS  PubMed  Google Scholar 

  • Müthing J (1996) High-resolution thin-layer chromatography of gangliosides. J Chromatogr A 720:3–25

    Article  PubMed  Google Scholar 

  • Müthing J (2000) Analyses of glycosphingolipids by high-performance liquid chromatography. Methods Enzymol 312:45–64

    Article  PubMed  Google Scholar 

  • Nadiri A, Polyak MJ, Jundi M, Alturaihi H, Reyes-Moreno C, Hassan GS, Mourad W (2011) CD40 translocation to lipid rafts: signaling requirements and downstream biological events. Eur J Immunol 41:2358–2367

    Article  CAS  PubMed  Google Scholar 

  • Navid F, Sondel PM, Barfield R, Shulkin BL, Kaufman RA, Allay JA, Gan J, Hutson P, Seo S, Kim K, Goldberg J, Hank JA, Billups CA, Wu J, Furman WL, McGregor LM, Otto M, Gillies SD, Handgretinger R, Santana VM (2014) Phase I trial of a novel anti-GD2 monoclonal antibody, Hu14.18K322A, designed to decrease toxicity in children with refractory or recurrent neuroblastoma. J Clin Oncol 32:1445–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowycky MC, Wu G, Ledeen RW (2014) Glycobiology of ion transport in the nervous system. Adv Neurobiol 9:321–342

    Article  PubMed  Google Scholar 

  • Patsos G, Corfield A (2009) O-Glycosylation: structural diversity and functions. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 111–138

    Google Scholar 

  • Patsos G, André S, Roeckel N, Gromes R, Gebert J, Kopitz J, Gabius HJ (2009) Compensation of loss of protein function in microsatellite-unstable colon cancer cells (HCT116): a gene-dependent effect on the cell surface glycan profile. Glycobiology 19:726–734

    Article  CAS  PubMed  Google Scholar 

  • Paulick MG, Bertozzi CR (2008) The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 47:6991–7000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peguet-Navarro J, Sportouch M, Popa I, Berthier O, Schmitt D, Portoukalian J (2003) Gangliosides from human melanoma tumors impair dendritic cell differentiation from monocytes and induce their apoptosis. J Immunol 170:3488–3494

    Article  CAS  PubMed  Google Scholar 

  • Percec V, Leowanawat P, Sun HJ, Kulikov O, Nusbaum CD, Tran TM, Bertin A, Wilson DA, Peterca M, Zhang S, Kamat NP, Vargo K, Moock D, Johnston ED, Hammer DA, Pochan DJ, Chen Y, Chabre YM, Shiao TC, Bergeron-Brlek M, André S, Roy R, Gabius HJ, Heiney PA (2013) Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. J Am Chem Soc 135:9055–9077

    Article  CAS  PubMed  Google Scholar 

  • Platt FM (2014) Sphingolipid lysosomal storage disorders. Nature 510:68–75

    Article  CAS  PubMed  Google Scholar 

  • Platt FM, Jeyakumar M (2008) Substrate reduction therapy. Acta Paediatr 97:88–93

    Article  PubMed  Google Scholar 

  • Prinetti A, Loberto N, Chigorno V, Sonnino S (2009) Glycosphingolipid behaviour in complex membranes. Biochim Biophys Acta 1788:184–193

    Article  CAS  PubMed  Google Scholar 

  • Regina-Todeschini A, Hakomori SI (2008) Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta 1780:421–433

    Article  CAS  PubMed  Google Scholar 

  • Reuter G, Gabius HJ (1996) Sialic acids structure: analysis-metabolism-occurrence-recognition. Biol Chem Hoppe Seyler 377:325–342

    Article  CAS  PubMed  Google Scholar 

  • Reuter G, Gabius HJ (1999) Eukaryotic glycosylation: whim of nature or multipurpose tool? Cell Mol Life Sci 55:368–422

    Article  CAS  PubMed  Google Scholar 

  • Reutter W, Stäsche S, Stehling P, Baum O (1997) The biology of sialic acids: insight into their structure, metabolism and function in particular during viral infection. In: Gabius HJ, Gabius S (eds) Glycosciences: status and perspectives. Chapman & Hall, Weinheim, pp 245–260

    Google Scholar 

  • Roots BI (1995) Locating lipids in the CNS: an historical perspective. Neurochem Res 20:1261–1268

    Article  CAS  PubMed  Google Scholar 

  • Roth J (1983) Application of lectin: gold complexes for electron microscopic localization of glycoconjugates on thin sections. J Histochem Cytochem 31:987–999

    Article  CAS  PubMed  Google Scholar 

  • Roth J (1993) Cellular sialoglycoconjugates: a histochemical perspective. Histochem J 25:687–710

    CAS  PubMed  Google Scholar 

  • Roth J (1996) Protein glycosylation in the endoplasmic reticulum and the Golgi apparatus and cell-type specificity of cell surface glycoconjugate expression: analysis by protein A-gold and lectin-gold techniques. Histochem Cell Biol 106:79–92

    Article  CAS  PubMed  Google Scholar 

  • Roth J (2011) Lectins for histochemical demonstration of glycans. Histochem Cell Biol 136:117–130

    Article  CAS  PubMed  Google Scholar 

  • Roth J, Zuber C (2017) Quality control of glycoprotein folding and ERAD: the role of N-glycan handling, EDEM1 and OS-9. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1513-9

  • Roy R, Murphy PV, Gabius HJ (2016) Multivalent carbohydrate-lectin interactions: how synthetic chemistry enables insights into nanometric recognition. Molecules 21:629

    Article  CAS  Google Scholar 

  • Roy R, Cao Y, Kaltner H, Kottari N, Shiao TC, Belkhadem K, André S, Manning JC, Murphy PV, Gabius HJ (2017) Teaming up synthetic chemistry and histochemistry for activity screening in galectin-directed inhibitor design. Histochem Cell Biol 147(2). doi:10.1007/s00418-016-1525-5

  • Rüdiger H (1997) Structure and functions of plant lectins. In: Gabius HJ, Gabius S (eds) Glycosciences: status and perspectives. Chapman & Hall, Weinheim, pp 415–438

    Google Scholar 

  • Rüdiger H, Gabius HJ (2001) Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J 18:589–613

    Article  PubMed  Google Scholar 

  • Rüdiger H, Gabius HJ (2009) The biochemical basis and coding capacity of the sugar code. In: Gabius HJ (ed) the sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 3–14

    Google Scholar 

  • Ruiz FM, Scholz BA, Buzamet E, Kopitz J, André S, Menendez M, Romero A, Solis D, Gabius HJ (2014) Natural single amino acid polymorphism (F19Y) in human galectin-8: detection of structural alterations and increased growth-regulatory activity on tumor cells. FEBS J 281:1446–1464

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Hakomori SI (1971) Quantitative isolation of total glycosphingolipids from animal cells. J Lipid Res 12:257–259

    CAS  PubMed  Google Scholar 

  • Sanchez-Ruderisch H, Fischer C, Detjen KM, Welzel M, Wimmel A, Manning JC, André S, Gabius HJ (2010) Tumor suppressor p16INK4a: downregulation of galectin-3, an endogenous competitor of the pro-anoikis effector galectin-1, in a pancreatic carcinoma model. FEBS J 277:3552–3563

    Article  CAS  PubMed  Google Scholar 

  • Sandhoff K, Kolter T (2003) Biosynthesis and degradation of mammalian glycosphingolipids. Philos Trans R Soc Lond B 358:847–861

    Article  CAS  Google Scholar 

  • Sangiorgio V, Pitto M, Palestini P, Masserini M (2004) GPI-anchored proteins and lipid rafts. Ital J Biochem 53:98–111

    CAS  PubMed  Google Scholar 

  • Schengrund CL (2015) Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem Sci 40:397–406

    Article  CAS  PubMed  Google Scholar 

  • Schnaar RL (2016) Gangliosides of the vertebrate nervous system. J Mol Biol 428:3325–3336

    Article  CAS  PubMed  Google Scholar 

  • Schnaar RL, Needham LK (1994) Thin-layer chromatography of glycosphingolipids. Methods Enzymol 230:371–389

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS, Pope A, Simpson K, Taggart J, Smith MG, DiStefano L (1992) Recovery from experimental parkinsonism in primates with GM1 ganglioside treatment. Science 256:843–846

    Article  CAS  PubMed  Google Scholar 

  • Schuette CG, Pierstorff B, Huettler S, Sandhoff K (2001) Sphingolipid activator proteins: proteins with complex functions in lipid degradation and skin biogenesis. Glycobiology 11:81R–90R

    Article  CAS  PubMed  Google Scholar 

  • Schuller S (2011) Shiga toxin interaction with human intestinal epithelium. Toxins 3:626–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shams-Eldin H, Debierre-Grockiego F, Schwarz R (2009) Glycosylphosphatidylinositol anchors: structure, biosynthesis and functions. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 155–176

    Google Scholar 

  • Shen W, Stone K, Jales A, Leitenberg D, Ladisch S (2008) Inhibition of TLR activation and up-regulation of IL-1R-associated kinase-M expression by exogenous gangliosides. J Immunol 180:4425–4432

    Article  CAS  PubMed  Google Scholar 

  • Siebert HC, Jimenez-Barbero J, André S, Kaltner H, Gabius HJ (2003a) Describing topology of bound ligand by transferred nuclear Overhauser effect spectroscopy and molecular modeling. Methods Enzymol 362:417–434

    Article  CAS  PubMed  Google Scholar 

  • Siebert HC, André S, Lu SY, Frank M, Kaltner H, van Kuik JA, Korchagina EY, Bovin N, Tajkhorshid E, Kaptein R, Vliegenthart JF, von der Lieth CW, Jiménez-Barbero J, Kopitz J, Gabius HJ (2003b) Unique conformer selection of human growth-regulatory lectin galectin-1 for ganglioside GM1 versus bacterial toxins. Biochemistry 42:14762–14773

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  • Simpson MA, Cross H, Proukakis C, Priestman DA, Neville DC, Reinkensmeier G, Wang H, Wiznitzer M, Gurtz K, Verganelaki A, Pryde A, Patton MA, Dwek RA, Butters TD, Platt FM, Crosby AH (2004) Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet 36:1225–1229

    Article  CAS  PubMed  Google Scholar 

  • Skipski VP (1975) Thin-layer chromatography of neutral glycosphingolipids. Methods Enzymol 35:396–425

    Article  CAS  PubMed  Google Scholar 

  • Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K Jr, Gabius H-J (2015) A guide into glycosciences: how chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta 1850:186–235

    Article  PubMed  CAS  Google Scholar 

  • Spessott W, Crespo PM, Daniotti JL, Maccioni HJ (2012) Glycosyltransferase complexes improve glycolipid synthesis. FEBS Lett 586:2346–2350

    Article  CAS  PubMed  Google Scholar 

  • Spicer SS, Schulte BA (1992) Diversity of cell glycoconjugates shown histochemically: a perspective. J Histochem Cytochem 40:1–38

    Article  CAS  PubMed  Google Scholar 

  • Stechly L, Morelle W, Dessein AF, André S, Grard G, Trinel D, Dejonghe MJ, Leteurtre E, Drobecq H, Trugnan G, Gabius HJ, Huet G (2009) Galectin-4-regulated delivery of glycoproteins to the brush border membrane of enterocyte-like cells. Traffic 10:438–450

    Article  CAS  PubMed  Google Scholar 

  • Sullards MC, Allegood JC, Kelly S, Wang E, Haynes CA, Park H, Chen Y, Merrill AH Jr (2007) Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography-tandem mass spectrometry: inside-out sphingolipidomics. Methods Enzymol 432:83–115

    Article  CAS  PubMed  Google Scholar 

  • Surma MA, Klose C, Simons K (2012) Lipid-dependent protein sorting at the trans-Golgi network. Biochim Biophys Acta 1821:1059–1067

    Article  CAS  PubMed  Google Scholar 

  • Suzuki KG (2015) New insights into the organization of plasma membrane and its role in signal transduction. Int Rev Cell Mol Biol 317:67–96

    Article  PubMed  Google Scholar 

  • Suzuki M, Cheung NK (2015) Disialoganglioside GD2 as a therapeutic target for human diseases. Expert Opin Ther Targets 19:349–362

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Katzman R, Korey SR (1965) Chemical studies on Alzheimer’s disease. J Neuropathol Exp Neurol 24:211–224

    Article  CAS  PubMed  Google Scholar 

  • Svennerholm L (1956) The quantitative estimation of cerebrosides in nervous tissue. J Neurochem 1:42–53

    Article  CAS  PubMed  Google Scholar 

  • Svennerholm L (1957) Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method. Biochim Biophys Acta 24:604–611

    Article  CAS  PubMed  Google Scholar 

  • Tettamanti R, Anastasia L (2009) Chemistry, tissue and cellular distribution and developmental profiles of neural glycolipids. In: Tettamanti R, Goracci G (eds) Handbook of neurochemistry and molecular neurobiology: neural lipids. Springer, New York, pp 100–169

    Google Scholar 

  • Thaxton C, Bhat M (2009) Myelination and regional domain differentiation of the axon. In: König E (ed) Cell biology of the axon. Springer, Heidelberg, pp 1–28

    Google Scholar 

  • Tidhar R, Futerman AH (2013) The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim Biophys Acta 1833:2511–2518

    Article  CAS  PubMed  Google Scholar 

  • Toegel S, Bieder D, André S, Kayser K, Walzer SM, Hobusch G, Windhager R, Gabius HJ (2014) Human osteoarthritic knee cartilage: fingerprinting of adhesion/growth-regulatory galectins in vitro and in situ indicates differential upregulation in severe degeneration. Histochem Cell Biol 142:373–388

    Article  CAS  PubMed  Google Scholar 

  • Toegel S, Weinmann D, André S, Walzer SM, Bilban M, Schmidt S, Chiari C, Windhager R, Krall C, Bennani-Baiti IM, Gabius H-J (2016) Galectin-1 couples glycobiology to inflammation in osteoarthritis through the activation of an NF-κB-regulated gene network. J Immunol 196:1910–1921

    Article  CAS  PubMed  Google Scholar 

  • Tsai Y, Itokazu Y, Yu RK (2016) GM1 Ganglioside is involved in epigenetic activation loci of neuronal cells. Neurochem Res 41:107–115

    Article  CAS  PubMed  Google Scholar 

  • Ullman MD, McCluer RH (1987) High-pressure liquid chromatography analysis of neutral glycosphingolipids: perbenzoylated mono-, di-, tri-, and tetraglycosylceramides. Methods Enzymol 138:117–125

    Article  CAS  PubMed  Google Scholar 

  • Valentino L, Moss T, Olson E, Wang HJ, Elashoff R, Ladisch S (1990) Shed tumor gangliosides and progression of human neuroblastoma. Blood 75:1564–1567

    CAS  PubMed  Google Scholar 

  • van Echten-Deckert G (2000) Sphingolipid extraction and analysis by thin-layer chromatography. Methods Enzymol 312:64–79

    Article  PubMed  Google Scholar 

  • van Echten-Deckert G, Walter J (2012) Sphingolipids: critical players in Alzheimer’s disease. Prog Lipid Res 51:378–393

    Article  PubMed  CAS  Google Scholar 

  • Vartabedian VF, Savage PB, Teyton L (2016) The processing and presentation of lipids and glycolipids to the immune system. Immunol Rev 272:109–119

    Article  CAS  PubMed  Google Scholar 

  • Velasco S, Díez-Revuelta N, Hernández-Iglesias T, Kaltner H, André S, Gabius HJ, Abad-Rodríguez J (2013) Neuronal Galectin-4 is required for axon growth and for the organization of axonal membrane L1 delivery and clustering. J Neurochem 125:49–62

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Lu ZH, Gabius HJ, Rohowsky-Kochan C, Ledeen RW, Wu G (2009) Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis. J Immunol 182:4036–4045

    Article  CAS  PubMed  Google Scholar 

  • Wiegandt H (1992) Insect glycolipids. Biochim Biophys Acta 1123:117–126

    Article  CAS  PubMed  Google Scholar 

  • Wilson IBH, Paschinger K, Rendic D (2009) Glycosylation of model and ‘lower’ organisms. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 139–154

    Google Scholar 

  • Wondimu A, Liu Y, Su Y, Bobb D, Ma JS, Chakrabarti L, Radoja S, Ladisch S (2014) Gangliosides drive the tumor infiltration and function of myeloid-derived suppressor cells. Cancer Res 74:5449–5457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Lu ZH, Obukhov AG, Nowycky MC, Ledeen RW (2007) Induction of calcium influx through TRPC5 channels by cross-linking of GM1 ganglioside associated with α5β1 integrin initiates neurite outgrowth. J Neurosci 27:7447–7458

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Lu ZH, Gabius HJ, Ledeen RW, Bleich D (2011) Ganglioside GM1 deficiency in effector T cells from NOD mice induces resistance to regulatory T-cell suppression. Diabetes 60:2341–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Lu ZH, Kulkarni N, Ledeen RW (2012) Deficiency of ganglioside GM1 correlates with Parkinson’s disease in mice and humans. J Neurosci Res 90:1997–2008

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Lu ZH, André S, Gabius HJ, Ledeen RW (2016) Functional interplay between ganglioside GM1 and cross-linking galectin-1 induces axon-like neuritogenesis via integrin-based signaling and TRPC5-dependent Ca2+ influx. J Neurochem 136:550–563

    Article  CAS  PubMed  Google Scholar 

  • Xiao Q, Zhang S, Wang Z, Sherman SE, Moussodia RO, Peterca M, Muncan A, Williams DR, Hammer DA, Vertésy S, André S, Gabius HJ, Klein ML, Percec V (2016) Onion-like glycodendrimersomes from sequence-defined Janus glycodendrimers and influence of architecture on reactivity to a lectin. Proc Natl Acad Sci USA 113:1162–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa K (2015) GM1 ganglioside and Alzheimer’s disease. Glycoconj J 32(3–4):87–91

    Article  CAS  PubMed  Google Scholar 

  • Yu RK, Nakatani Y, Yanagisawa M (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50(Suppl):S440–S445

    PubMed  PubMed Central  Google Scholar 

  • Yu RK, Tsai YT, Ariga T (2012) Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res 37:1230–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuki N, Susuki K, Koga M, Nishimoto Y, Odaka M, Hirata K, Taguchi K, Miyatake T, Furukawa K, Kobata T, Yamada M (2004) Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain–Barré syndrome. Proc Natl Acad Sci USA 101:11404–11409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeytin HE, Tripathi PK, Bhattacharya-Chatterjee M, Foon KA, Chatterjee SK (2000) Construction and characterization of DNA vaccines encoding the single-chain variable fragment of the anti-idiotype antibody 1A7 mimicking the tumor-associated antigen disialoganglioside GD2. Cancer Gene Ther 7:1426–1436

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Moussodia RO, Murzeau C, Sun HJ, Klein ML, Vertésy S, André S, Roy R, Gabius HJ, Percec V (2015) Dissecting molecular aspects of cell interactions using glycodendrimersomes with programmable glycan presentation and engineered human lectins. Angew Chem Int Ed Engl 54:4036–4040

    Article  CAS  PubMed  Google Scholar 

  • Zuber C, Roth J (2009) N-Glycosylation. In: Gabius HJ (ed) The sugar code. Fundamentals of glycosciences. Wiley, Weinheim, pp 87–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Kopitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopitz, J. Lipid glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 147, 175–198 (2017). https://doi.org/10.1007/s00418-016-1518-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1518-4

Keywords

Navigation