Skip to main content
Log in

New pulmonary hypertension model in conscious dogs to investigate pulmonary-selectivity of acute pharmacological interventions

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Testing of investigational drugs in animal models is a critical step in drug development. Current models of pulmonary hypertension (PH) have limitations. The most relevant outcome parameters such as pulmonary artery pressure (PAP) are measured invasively which requires anesthesia of the animal. We developed a new canine PH model in which pulmonary vasodilators can be characterized in conscious dogs and lung selectivity can be assessed non-invasively.

Methods

Telemetry devices were implanted to measure relevant hemodynamic parameters in conscious dogs. A hypoxic chamber was constructed in which the animals were placed in a conscious state. By reducing the inspired oxygen fraction (FiO2) to 10%, a hypoxic pulmonary vasoconstriction was induced leading to PH. The PDE-5 inhibitor sildenafil, the current standard of care was compared to atrial natriuretic peptide (ANP).

Results

The new hypoxic chamber provided a stable hypoxic atmosphere during all experiments. The mean PAP under normoxic conditions was 15.8 ± 1.8 mmHg. Hypoxia caused a reliable increase in mean PAP (+ 12.2 ± 3.2 mmHg, p < 0.0001). Both, sildenafil (− 6.8 ± 4.4 mmHg) and ANP (− 6.4 ± 3.8 mmHg) significantly (p < 0.05) decreased PAP. Furthermore sildenafil and ANP showed similar effects on systemic hemodynamics. In subsequent studies, the in vitro effects and gene expression pattern of the two pathways were exemplified.

Conclusions

By combining the hypoxic environment with the telemetric approach, we could successfully establish a new acute PH model. Sildenafil and ANP demonstrated equal effects regarding pulmonary selectivity. This non-invasive model could help to rapidly screen pulmonary vasodilators with decreased animal burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANP:

Atrial natriuretic peptide

BP:

Blood pressure

cGMP:

Cyclic guanosine monophosphate

DBP:

Diastolic blood pressure

ET:

Endothelin

DPAP:

Diastolic pulmonary artery pressure

ECG:

Electrocardiogram

FiO2 :

Inspired oxygen fraction

GMP:

Guanosin monophosphate

GTP:

Guanosin triphosphate

HR:

Heart rate

MBP:

Mean blood pressure

MPAP:

Mean pulmonary artery pressure

NPR1:

Natriuretic peptide receptor 1

NO:

Nitric oxide

NEP:

Neutral endopeptidase

PAP:

Pulmonary artery pressure

PDE-5:

Phosphodiesterase 5

PDE-5i:

PDE5 inhibitors

PAH:

Pulmonary arterial hypertension

PH:

Pulmonary hypertension

SBP:

Systolic blood pressure

sGC:

Soluble guanylyl cyclase

SoC:

Standard of care

SPAP:

Systolic pulmonary artery pressure

References

  • Anker SD, Ponikowski P, Mitrovic V, Peacock WF, Filippatos G (2015) Ularitide for the treatment of acute decompensated heart failure: from preclinical to clinical studies. Eur Heart J 36(12):715–723. https://doi.org/10.1093/eurheartj/ehu484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28(1):89–94

    Article  Google Scholar 

  • de Bold MK, Sheffield WP, Martinuk A, Bhakta V, Eltringham-Smith L, de Bold AJ (2012) Characterization of a long-acting recombinant human serum albumin-atrial natriuretic factor (ANF) expressed in Pichia pastoris. Regul Pept 175(1–3):7–10. https://doi.org/10.1016/j.regpep.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  • Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M (2015) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 46(4):903–975. https://doi.org/10.1183/13993003.01032-2015

    Article  CAS  PubMed  Google Scholar 

  • Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matucci M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoeper M (2016) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Rev Esp Cardiol 69(2):177. https://doi.org/10.1016/j.rec.2016.01.002

    Article  PubMed  Google Scholar 

  • Ghofrani HA, Galie N, Grimminger F, Grunig E, Humbert M, Jing ZC, Keogh AM, Langleben D, Kilama MO, Fritsch A, Neuser D, Rubin LJ, Group P-S (2013) Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 369 (4):330–340. https://doi.org/10.1056/NEJMoa1209655

    Article  CAS  PubMed  Google Scholar 

  • Goodchild C, Serrao J (1989) Cardiovascular effects of propofol in the anaesthetized dog. Br J Anaesth 63(1):87–92

    Article  CAS  Google Scholar 

  • Handoko ML, Schalij I, Kramer K, Sebkhi A, Postmus PE, van der Laarse WJ, Paulus WJ, Vonk-Noordegraaf A (2008) A refined radio-telemetry technique to monitor right ventricle or pulmonary artery pressures in rats: a useful tool in pulmonary hypertension research. Pflugers Arch Eur J Physiol 455(5):951–959. https://doi.org/10.1007/s00424-007-0334-z

    Article  CAS  Google Scholar 

  • Hohne C, Drzimalla M, Krebs MO, Boemke W, Kaczmarczyk G (2003) Atrial natriuretic peptide ameliorates hypoxic pulmonary vasoconstriction without influencing systemic circulation. J Physiol Pharmacol 54(4):497–510

    CAS  PubMed  Google Scholar 

  • Jin HK, Yang RH, Thornton RM, Chen YF, Jackson R, Oparil S (1988) Atrial natriuretic peptide lowers pulmonary arterial pressure in hypoxia-adapted rats. J Appl Physiol 65(4):1729–1735

    Article  CAS  Google Scholar 

  • Lara-Pezzi E, Menasche P, Trouvin JH, Badimon L, Ioannidis JP, Wu JC, Hill JA, Koch WJ, De Felice AF, de Waele P, Steenwinckel V, Hajjar RJ, Zeiher AM (2015) Guidelines for translational research in heart failure. J Cardiovasc Transl Res 8(1):3–22. https://doi.org/10.1007/s12265-015-9606-8

    Article  PubMed  Google Scholar 

  • Lawrie A (2014) A report on the use of animal models and phenotyping methods in pulmonary hypertension research. Pulm Circ 4(1):2–9. https://doi.org/10.1086/674886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LS, Cheng HY, Chin WJ, Jin HK, Oparil S (1989) Atrial natriuretic peptide lowers pulmonary arterial pressure in patients with high altitude disease. Am J Med Sci 298(6):397–401

    Article  CAS  Google Scholar 

  • Maarman G, Lecour S, Butrous G, Thienemann F, Sliwa K (2013) A comprehensive review: the evolution of animal models in pulmonary hypertension research; are we there yet? Pulm Circ 3(4):739–756. https://doi.org/10.1086/674770

    Article  PubMed  PubMed Central  Google Scholar 

  • McKie PM, Ichiki T, Burnett JC Jr (2012) M-atrial natriuretic peptide: a novel antihypertensive protein therapy. Curr Hypertens Rep 14(1):62–69. https://doi.org/10.1007/s11906-011-0244-5

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J, American College of Cardiology Foundation Task Force on Expert Consensus D, American Heart A, American College of Chest P, American Thoracic Society I, Pulmonary Hypertension A (2009) ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 53 (17):1573–1619. https://doi.org/10.1016/j.jacc.2009.01.004

    Article  PubMed  Google Scholar 

  • Mitaka C, Kudo T, Haraguchi G, Tomita M (2011) Cardiovascular and renal effects of carperitide and nesiritide in cardiovascular surgery patients: a systematic review and meta-analysis. Crit Care 15(5):R258. https://doi.org/10.1186/cc10519

    Article  PubMed  PubMed Central  Google Scholar 

  • Morikawa S, Sone T, Tsuboi H, Mukawa H, Morishima I, Uesugi M, Morita Y, Numaguchi Y, Okumura K, Murohara T (2009) Renal protective effects and the prevention of contrast-induced nephropathy by atrial natriuretic peptide. J Am Coll Cardiol 53(12):1040–1046. https://doi.org/10.1016/j.jacc.2008.10.061

    Article  CAS  PubMed  Google Scholar 

  • Preston IR, Hill NS, Gambardella LS, Warburton RR, Klinger JR (2004) Synergistic effects of ANP and sildenafil on cGMP levels and amelioration of acute hypoxic pulmonary hypertension. Exp Biol Med 229(9):920–925

    Article  CAS  Google Scholar 

  • Saito Y (2010) Roles of atrial natriuretic peptide and its therapeutic use. J Cardiol 56(3):262–270. https://doi.org/10.1016/j.jjcc.2010.08.001

    Article  PubMed  Google Scholar 

  • Schafer S, Ellinghaus P, Janssen W, Kramer F, Lustig K, Milting H, Kast R, Klein M (2009) Chronic inhibition of phosphodiesterase 5 does not prevent pressure-overload-induced right-ventricular remodelling. Cardiovasc Res 82(1):30–39. https://doi.org/10.1093/cvr/cvp002

    Article  CAS  PubMed  Google Scholar 

  • Sezai A, Hata M, Niino T, Yoshitake I, Unosawa S, Wakui S, Fujita K, Takayama T, Kasamaki Y, Hirayama A, Minami K (2010) Continuous low-dose infusion of human atrial natriuretic peptide in patients with left ventricular dysfunction undergoing coronary artery bypass grafting: the NU-HIT (Nihon University working group study of low-dose Human ANP Infusion Therapy during cardiac surgery) for left ventricular dysfunction. J Am Coll Cardiol 55(17):1844–1851. https://doi.org/10.1016/j.jacc.2009.11.085

    Article  CAS  PubMed  Google Scholar 

  • Zakeri R, Burnett JC (2011) Designer natriuretic peptides: a vision for the future of heart failure therapeutics. Can J Physiol Pharmacol 89(8):593–601. https://doi.org/10.1139/y11-048

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mondritzki.

Ethics declarations

Funding

None.

Conflict of interest

All the authors involved in the study were employees of Bayer AG.

Additional information

Communicated by Massimo Pagani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

421_2017_3761_MOESM1_ESM.jpg

Supplement Figure 1: Content of carbon dioxide (A) and oxygen (B) in the hypoxic chamber during the entire acute experiment. C) Plasma ANP concentrations after intravenous infusion of 3, 10, 30 and 100 pmol/kg/min. D) Oxygen saturation measured by pulse oximetry during the test run. (JPG 43 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondritzki, T., Boehme, P., Schramm, L. et al. New pulmonary hypertension model in conscious dogs to investigate pulmonary-selectivity of acute pharmacological interventions. Eur J Appl Physiol 118, 195–203 (2018). https://doi.org/10.1007/s00421-017-3761-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3761-3

Keywords

Navigation