Skip to main content

Advertisement

Log in

CD133+CD34+ stem cells are mobilized after musculoskeletal surgery and target endothelium activated by surgical wound fluid

  • Original Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Purpose

CD133+CD34+ hematopoietic stem cells (HSCs) have been shown to differentiate into cell types of nonhematopoietic lineage. It is unclear whether HSCs target and repair damaged musculoskeletal tissue. We aimed to analyze if HSCs are mobilized after musculoskeletal surgery to circulation, home to surgical wound fluid (SWF)-activated endothelium, and are chemoattracted by SWF under in vitro conditions.

Methods

Circulating HSC levels were measured at t = 3, 8, 24, 48 h postoperatively using fluorescence-activated cell sorting (FACS) and compared with preoperative levels (t = 0) and normal volunteers. For adhesion experiments, HSCs were incubated on SWF-activated human umbilical vein endothelial cells (HUVECs) and HSC/HUVEC ratios determined by FACS. Adhesion receptor expression on HSC (L-selectin, lymphocyte function-associated antigen 1 (LFA-1), very late antigen-4) and SWF-activated HUVECs (P-selectin, E-selectin, V-cell adhesion molecules (CAM), I-CAM) was determined and HSC adhesion measured again after blocking upregulated receptors. Using a modified Boyden chamber, HSC chemotaxis was analyzed for an SWF and cytokine-neutralized SWF (vascular endothelial growth factor (VEGF), stromal-derived factor-1, interleukin-8) gradient.

Results

Circulating HSCs were significantly increased 8 h after surgery. Increasing HSC adhesion to HUVECs was shown for SWF isolated at any postoperative time point, and chemoattraction was significantly induced in an SWF gradient with SWF isolated 8 and 24 h postoperatively. Receptor and cytokine blockade experiments with monoclonal antibodies revealed decreased HSC adhesion to SWF-activated endothelium and showed lower chemotaxis after blocking the LFA-1-I-CAM-1 receptor axis (adhesion) and neutralizing VEGF-165 (chemotaxis).

Conclusions

Our data demonstrate that HSCs are mobilized after trauma, target to wound-associated endothelium via the LFA-1-I-CAM-1 axis, and are chemoattracted by VEGF-165 under in vitro conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brazelton TR, Rossi FM, Keshet GI et al (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. Science 290(5497):1775–1779

    Article  PubMed  CAS  Google Scholar 

  2. Ferrari G, Cusella-De Angelis G, Coletta M et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279(5356):1528–1530

    Article  PubMed  CAS  Google Scholar 

  3. Peichev M, Naiyer AJ, Pereira D et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95(3):952–958

    PubMed  CAS  Google Scholar 

  4. Jackson KA, Majka SM, Wang H et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107(11):1395–1402

    Article  PubMed  CAS  Google Scholar 

  5. Lagasse E, Connors H, Al-Dahalimi M et al (2000) Purified hematopoietic stem cells can differentiate to hepatocytes in vivo. Nat Med 6:1229–1234

    Article  PubMed  CAS  Google Scholar 

  6. Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    Article  PubMed  CAS  Google Scholar 

  7. Abkowitz JL (2002) Can human hematopoietic stem cells become skin, gut, or liver cells? N Engl J Med 346(10):770–772

    Article  PubMed  Google Scholar 

  8. Alison MR, Poulsom R, Jeffery R et al (2000) Hepatocytes from non-hepatic adult stem cells. Nature 406(6793):257

    Article  PubMed  CAS  Google Scholar 

  9. Gehling UM, Ergun S, Schumacher U et al (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95(10):3106–3112

    PubMed  CAS  Google Scholar 

  10. Bailey AS, Jiang S, Afentoulis M et al (2004) Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood 103(1):13–19

    Article  PubMed  CAS  Google Scholar 

  11. Vale PR, Isner JM, Rosenfield K (2001) Therapeutic angiogenesis in critical limb and myocardial ischemia. J Interv Cardiol 14(5):511–528

    Article  PubMed  CAS  Google Scholar 

  12. Aiuti A, Webb IJ, Bleul C et al (1997) The chemokine SDF-1 is a chemoattractant for human CD34þ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34 þ progenitors to peripheral blood. J Exp Med 185:111–120

    Article  PubMed  CAS  Google Scholar 

  13. Dalakas E, Newsome PN, Harrison DJ et al (2005) Hematopoietic stem cell trafficking in liver injury. FASEB J 19(10):1225–1231

    Article  PubMed  CAS  Google Scholar 

  14. Eriksson U, Alitalo K (2002) VEGF receptor 1 stimulates stem-cell recruitment and new hope for angiogenesis therapies. Nat Med 8(8):775–777

    Article  PubMed  CAS  Google Scholar 

  15. Moore MA, Hattori K, Heissig B et al (2001) Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann N Y Acad Sci 938:36–45

    Article  PubMed  CAS  Google Scholar 

  16. Koehl U, Zimmermann S, Esser R et al (2002) Autologous transplantation of CD133 selected hematopoietic progenitor cells in a pediatric patient with relapsed leukemia. Bone Marrow Transplant 29(11):927–930

    Article  PubMed  CAS  Google Scholar 

  17. Bittner RE, Schofer C, Weipoltshammer K et al (1999) Recruitment of bone-marrow derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol 199:391–396

    Article  PubMed  CAS  Google Scholar 

  18. Petersen BE, Bowen WC, Patrene KD et al (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    Article  PubMed  CAS  Google Scholar 

  19. Tendera M, Wojakowski W (2005) Clinical trials using autologous bone marrow and peripheral blood-derived progenitor cells in patients with acute myocardial infarction. Folia Histochem Cytobiol 43(4):233–235

    PubMed  Google Scholar 

  20. Tateishi-Yuyama E, Matsubara H, Murohara T et al (2002) Therapeutic Angiogenesis using Cell Transplantation (TACT) Study Investigators. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360(9331):427–435

    Article  PubMed  Google Scholar 

  21. Lemoli RM, Catani L, Talarico S et al (2006) Mobilization of bone marrow-derived hematopoietic and endothelial stem cells after orthotopic liver transplantation and liver resection. Stem Cells 24(12):2817–2825

    Article  PubMed  CAS  Google Scholar 

  22. Wojakowski W, Tendera M, Michalowska A et al (2004) Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110(20):3213–3220

    Article  PubMed  CAS  Google Scholar 

  23. Laing AJ, Dillon JP, Condon ET et al (2007) Mobilization of endothelial precursor cells: systemic vascular response to musculoskeletal trauma. J Orthop Res 25(1):44–50

    Article  PubMed  CAS  Google Scholar 

  24. Chute JP (2006) Stem cell homing. Curr Opin Hematol 13(6):399–406

    Article  PubMed  Google Scholar 

  25. Jin H, Aiyer A, Su J, Borgstrom P et al (2006) Homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J Clin Invest 116(3):652–662

    Article  PubMed  CAS  Google Scholar 

  26. Wu Y, Ip JE, Huang J et al (2006) Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circ Res 99(3):315–322

    Article  PubMed  CAS  Google Scholar 

  27. Gold J, Valinski HM, Hanks AN et al (2006) Adhesion receptor expression by CD34+ cells from peripheral blood or bone marrow grafts: correlation with time to engraftment. Exp Hematol 34(5):680–687

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kerstin Wilhelm for outstanding technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Janusz Powerski.

Additional information

Contributions

Study conception and design: Powerski, Marzi Acquisition of data: Powerski, Henrich, Sander, Wastl, Ludwig Analysis and interpretation of data: Powerski, Henrich Drafting manuscript: Powerski Critical revision of manuscript: Marzi, Henrich

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powerski, M.J., Henrich, D., Sander, A. et al. CD133+CD34+ stem cells are mobilized after musculoskeletal surgery and target endothelium activated by surgical wound fluid. Langenbecks Arch Surg 396, 379–387 (2011). https://doi.org/10.1007/s00423-010-0626-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-010-0626-1

Keywords

Navigation