Skip to main content

Advertisement

Log in

Drought-induced H2O2 accumulation in subsidiary cells is involved in regulatory signaling of stomatal closure in maize leaves

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Increasing H2O2 levels in guard cells in response to environmental stimuli are recently considered a general messenger involved in the signaling cascade for the induction of stomatal closure. But little is known as to whether subsidiary cells participate in the H2O2-mediated stomatal closure of grass plants. In the present study, 2-week-old seedlings of maize (Zea mays) were exposed to different degrees of soil water deficit for 3 weeks. The effects of soil water contents on leaf ABA and H2O2 levels and stomatal aperture were investigated using physiological, biochemical, and histochemical approaches. The results showed that even under well-watered conditions, significant amounts of H2O2 were observed in guard cells, whereas H2O2 concentrations in the subsidiary cells were negligible. Decreasing soil water contents led to a significant increase in leaf ABA levels associated with significantly enhanced O2 and H2O2 contents, consistent with reduced degrees of stomatal conductance and aperture. The significant increase in H2O2 appeared in both guard cells and subsidiary cells of the stomatal complex, and H2O2 levels increased with decreasing soil water contents. Drought-induced increase in the activity of antioxidative enzymes could not counteract the significant increase in H2O2 levels in guard cells and subsidiary cells. These results indicate that subsidiary cells participate in H2O2-mediated stomatal closure, and drought-induced H2O2 accumulation in subsidiary cells is involved in the signaling cascade regulating stomatal aperture of grass plants such as maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559–1572

    PubMed  CAS  Google Scholar 

  • An GY, Song CP, Zhang X, Jing YC, Yang DM, Huang M, Wu CH, Zhou PA (2000) Effect of hydrogen peroxide on stomatal movement and K+ channel on plasma membrane in Vicia faba guard cell. Acta Phytophysiol Sin 26:458–463

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Bienert GP, Schjoerring JK, Jahn TP (2006) Membrane transport of hydrogen peroxide. Biochim et Biophys Acta 1758:994–1003

    Article  CAS  Google Scholar 

  • Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  PubMed  CAS  Google Scholar 

  • Bindschedler LV et al (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP et al (1995) The origin of the oxidative burst in plants. Free Radic Res 23(6):517–532

    Article  PubMed  CAS  Google Scholar 

  • Bolwell GP et al (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three component system. J Exp Bot 53:1367–1376

    Article  PubMed  CAS  Google Scholar 

  • Brennan T, Frenkel C (1977) Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol 59:411–416

    Article  PubMed  CAS  Google Scholar 

  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006) ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45:113–122

    Article  PubMed  CAS  Google Scholar 

  • Chen HS, Dickinson RE, Dai YJ, Zhou LM (2011) Sensitivity of simulated terrestrial carbon assimilation and canopy transpiration to different stomatal conductance and carbon assimilation schemes. Clim Dyn 36:1037–1054

    Article  Google Scholar 

  • Del Rio LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  PubMed  Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation. J Exp Bot 32:79–91

    Article  CAS  Google Scholar 

  • Distéfano AM, Scuffi D, Garcıa-Mata C, Lamattina L, Laxalt AM (2012) Phospholipase Dd is involved in nitric oxide-induced stomatal closure. Planta 236:1899–1907

    Article  PubMed  Google Scholar 

  • Dynowski M, Schaaf G, Loque D, Moran O, Ludwig U (2008) Plant plasma membrane water channels conduct the signaling molecule H2O2. Biochem J 414:53–61

    Article  PubMed  CAS  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JD, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 1–42

    Google Scholar 

  • Gao S, Yan R, Cao M, Yang W, Wang S, Chen F (2008) Effects of copper on growth, antioxidant enzymes and phenylalanine ammonialyase activities in Jatropha curcas L. seedling. Plant Soil Environ 54:117–122

    CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:304–314

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, Fricker MD, Read ND, Trewavas AJ (1991) Role of calcium in signal transduction of Commelina guard cells. Plant Cell 3:333–344

    PubMed  CAS  Google Scholar 

  • Grabov A, Blatt MR (1998) Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc Natl Acad Sci USA 95:4778–4783

    Article  PubMed  CAS  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  PubMed  CAS  Google Scholar 

  • Hooijmaijers C, Rhee JY, Kwak KJ, Chung GC, Horie T, Katsuhara M, Kang H (2012) Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. J Plant Res 125:147–153

    Article  PubMed  CAS  Google Scholar 

  • Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Pore′e F, Lebaudy A, Bouchez D, Ve′ry A, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100:5549–5554

    Article  PubMed  CAS  Google Scholar 

  • Jiang MY, Zhang JH (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    Article  PubMed  CAS  Google Scholar 

  • Jiang MY, Zhang JH (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  PubMed  CAS  Google Scholar 

  • Kim MJ, Ciani S, Schachtman DP (2010) A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol Plant 3(2):420–427

    Article  PubMed  CAS  Google Scholar 

  • Kolla VA, Vavasseur A, Raghavendra AS (2007) Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of Arabidopsis. Planta 225:1421–1429

    Article  PubMed  CAS  Google Scholar 

  • Kopka J, Provart NJ, Müller-Röber B (1997) Potato guard cells respond to drying soil by a complex change in the expression of genes related to carbon metabolism and turgor regulation. Plant J 11:871–882

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Choi H, Suh S, Doo IS, Oh KY, Choi EJ, Schroeder JI, Taylor AT, Low PS, Lee Y (1999) Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol 121:147–152

    Article  PubMed  CAS  Google Scholar 

  • Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, Foyer CH (2005) Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J Exp Bot 56:417–423

    Article  PubMed  CAS  Google Scholar 

  • MacRobbie EAC (1997) Signalling in guard cells and regulation of ion channel activity. J Exp Bot 48:515–528

    Article  PubMed  CAS  Google Scholar 

  • Majore I, Wilhelm B, Marten I (2002) Identification of K+ channels in the plasma membrane of maize subsidiary cells. Plant Cell Physiol 43(8):844–852

    Article  PubMed  CAS  Google Scholar 

  • Mansfield TA, Hertherington AM, Atkinson CJ (1990) Some current aspects of stomatal physiology. Annu Rev Plant Physiol Plant Mol Biol 41:55–75

    Article  CAS  Google Scholar 

  • McAinsh MR, Brownlee C, Hetherington AM (1990) Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 343:186–188

    Article  CAS  Google Scholar 

  • McAinsh MR, Clayton H, Mansfield TA, Hetherington AM (1996) Changes in stomatal behavior and cytosolic free calcium in response to oxidative stress. Plant Physiol 111:1031–1042

    PubMed  CAS  Google Scholar 

  • Miao YC, Song CP, Dong FC, Wang XC (2000) ABA-induced hydrogen peroxide generation in guard cells of Vicia faba. Acta Phytophysiol Sin 26:53–58 (in Chinese)

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Mumm P, Wolf T, Fromm J, Roelfsema MRG, Marten I (2011) Cell type-specific regulation of ion channels within the maize stomatal complex. Plant Cell Physiol 52(8):1365–1375

    Article  PubMed  CAS  Google Scholar 

  • Murata Y, Pei ZM, Mori IC, Schroeder JI (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13:2513–2523

    PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) A re-evaluation of the ATP:NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49:1895–1908

    CAS  Google Scholar 

  • Orozco-Cardenas M, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc Natl Acad Sci USA 96:6553–6557

    Article  PubMed  CAS  Google Scholar 

  • Outlaw WH, Manchester J, Dicamelli CA, Randall DD, Rapp B, Veith GM (1979) Photosynthetic carbon reduction pathway is absent in chloroplasts of Vicia faba guard cells. Proc Natl Acad Sci USA 76:6371–6375

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Kluesener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406(17):731–734

    Article  PubMed  CAS  Google Scholar 

  • Peng CL, Ou ZY, Liu N, Lin GZ (2005) Response to high temperature in flag leaves of super high-yielding rice Pei’ai 64S/E32 and Liangyoupeijiu. Rice Sci 12:179–186

    Google Scholar 

  • Price AH, Taylor A, Ripley SJ, Griffiths A, Ttewavas AJ, Knight MR (1994) Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6:1301–1310

    PubMed  CAS  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    Article  PubMed  CAS  Google Scholar 

  • Raschke K, Fellows MP (1971) Stomatal movement in Zea mays: shuttle of potassium and chloride between guard cells and subsidiary cells. Planta 101:296–316

    Article  CAS  Google Scholar 

  • Raven J (2002) Selection pressures on stomatal evolution. New Phytol 153:371–386

    Article  CAS  Google Scholar 

  • Reckmann U, Scheibe R, Raschke K (1990) Rubisco activity in guard cells compared with the solute requirement for stomatal opening. Plant Physiol 92:246–253

    Article  PubMed  CAS  Google Scholar 

  • Sack FD (1987) The development and structure of stomata. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, Stanford, pp 59–89

    Google Scholar 

  • Schroeder JI, Hagiwara S (1990) Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc Natl Acad Sci USA 87:9305–9309

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Allen GJ, Hugouvieux V, Kwak JM, Waner D (2001a) Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol 52:627–658

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Kwak JM, Allen GJ (2001b) Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature 410:327–330

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki KI, Zeiger E (1985) Cyclic and noncyclic photophosphorylation in isolated guard cell chloroplasts from Vicia faba L. Plant Physiol 78:211–214

    Article  PubMed  CAS  Google Scholar 

  • Sousa-Lopes A, Antunes F, Cyrne L, Marinho HS (2004) Decreased cellular permeability to H2O2 protects Saccharomyces cerevisiae in stationary phase against oxidative stress. FEBS Lett 578:152–156

    Article  PubMed  CAS  Google Scholar 

  • Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes ROS production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol 134:1536–1545

    Article  PubMed  CAS  Google Scholar 

  • Teng NJ, Wang J, Chen T, Wu XQ, Wang YH, Lin JX (2006) Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol 172:92–103

    Article  PubMed  CAS  Google Scholar 

  • Uraji M, Katagiri T, Okuma E, Ye WX, Hossain MA, Masuda C, Miura A, Nakamura Y, C. Mori I, Shinozaki K, Murata Y (2012) Cooperative function of PLDδ and PLDα1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 159:450–460

    Article  PubMed  CAS  Google Scholar 

  • Vaughn KC (1987) Two immunological approaches to the detection of ribulose-1,5-bisphosphate carboxylase in guard cell chloroplasts. Plant Physiol 84:188–196

    Article  PubMed  CAS  Google Scholar 

  • Vranová E, Inzé D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    Article  PubMed  Google Scholar 

  • Wang PT, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Article  PubMed  CAS  Google Scholar 

  • Wang WH, Yi XQ, Han AD, Liu TW, Chen J, Wu FH, Dong XJ, He JX, Pei ZM, Zheng HL (2012) Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. J Exp Bot 63(1):177–190

    Article  PubMed  CAS  Google Scholar 

  • Wille AC, Lucas WJ (1984) Ultrastructural and histochemical studies on guard cells. Planta 160:129–142

    Article  Google Scholar 

  • Willmer C, Fricker M (1996) Stomata. Chapman & Hall, London, p 375

    Book  Google Scholar 

  • Willmer CM, Pallas JE (1973) A survey of stomatal movements and associated potassium fluxes in the plant kingdom. Can J Bot 51:37–42

    Article  CAS  Google Scholar 

  • Willmer CM, Pallas JE (1974) Stomatal movements and ion fluxes within epidermis of Commelina communis L. Nature 252:126–127

    Article  PubMed  CAS  Google Scholar 

  • Wolf T, Heidelmann T, Marten I (2006) ABA regulation of K+-permeable channels in maize subsidiary cells. Plant Cell Physiol 47(10):1372–1380

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong FC, Gao JF, Galbraith DW, Song CP (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126(4):1438–1448

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the National Natural Science Foundation of China (30972335), the “863” Program of China (2011AA100504), the International Science & Technology Cooperation Program of China (2010DFA34380), the international project (TS2010XBNL063), and the ‘‘111’’ Project of the Education Ministry of China (B12007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiping Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Liu, X., Li, Z. et al. Drought-induced H2O2 accumulation in subsidiary cells is involved in regulatory signaling of stomatal closure in maize leaves. Planta 238, 217–227 (2013). https://doi.org/10.1007/s00425-013-1886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1886-0

Keywords

Navigation