Skip to main content

Advertisement

Log in

Factors preventing the performance of oxygen isotope ratios as indicators of grain yield in maize

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

This paper provides new insights into source-sink relationships and transpiration processes which will eventually help to interpret δ 18 O as a genotype selection and ecophysiological tool for maize adaptation to drought.

Oxygen isotope composition (δ18O) has been proposed as a phenotyping tool to integrate leaf transpiration in C4 crops, such as maize. Within this context we hypothesize that δ18O in leaves may reflect primarily environmental and genetic variability in evaporative processes, but that this signal may become dampened in transit from source to sink tissues. The aim of this study was to assess the relative importance of transpirative or translocation-related factors affecting δ18O in plant tissues of maize. We performed two water regime experiments, one with two varieties under semi-controlled conditions, and another in the field with 100 genotypes during two consecutive years. The δ18O in organic matter at the leaf base was strongly correlated with the δ18O in stem water, indicating that it could be a good proxy for source water in extensive samplings. Compared to leaves, we observed an 18O depletion in silks and grains, but not in stem-soluble organic matter. We interpret this as evidence of exchange with unenriched water from source to sink, but mainly occurring within sink tissues. Although grain yield (GY) and physiological variables did not show clear intra-trial patterns against δ18O, the only tissues that correlated with GY in the linear regression approach were that of silks, giving an insight of evapotranspirative demand during female flowering and thus of potential maize lines that are better adapted to drought. This finding will eventually help to interpret δ18O as a genotype selection and ecophysiological tool for the adaption of maize and other crops to drought, offering insight into source-sink relationships and transpiration processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

E :

Transpiration

DS:

Drought stress conditions

g s :

Stomatal conductance

GY:

Grain yield

δ18OS :

Oxygen isotope composition in the silks

δ18OG :

Oxygen isotope composition in the mature kernels

δ18OstemOM :

Oxygen isotope composition in the stem-soluble organic matter

δ18OstemW :

Oxygen isotope composition in the stem water (source water)

δ18OLa :

Oxygen isotope composition of the leaf apex

δ18OLb :

Oxygen isotope composition of the leaf base

δ18OLa-Lb :

Enrichment along the leaf lamina

TL :

Leaf temperature

WW:

Well-watered conditions

References

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C-3 cereals: what should we breed for? Ann Bot 89:925–940. doi:10.1093/aob/mcf049

    Article  PubMed Central  PubMed  Google Scholar 

  • Araus JL, Villegas D, Aparicio N et al (2003) Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions. Crop Sci 43:170–180

    Article  Google Scholar 

  • Araus JL, Cabrera-Bosquet L, Serret MD et al (2013) Comparative performance of δ13C, δ18O and δ15N for phenotyping durum wheat adaptation to a dryland environment. Funct Plant Biol 40:595–608. doi:10.1071/FP12254

    Article  CAS  Google Scholar 

  • Araus JL, Ferrio JP, Voltas J et al (2014) Agronomic conditions and crop evolution in ancient Near East agriculture. Nat Commun 5:3953. doi:10.1038/ncomms4953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barbour MM (2007) Stable oxygen isotope composition of plant tissue: a review. Funct Plant Biol 34:83–94. doi:10.1071/FP06228

    Article  CAS  Google Scholar 

  • Barbour MM, Farquhar GD (2000) Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant Cell Environ 23:473–485. doi:10.1046/j.1365-3040.2000.00575.x

    Article  CAS  Google Scholar 

  • Barbour MM, Fischer RA, Sayre KD, Farquhar GD (2000) Oxygen isotope ratio of leaf and grain material correlates with stomatal conductance and grain yield in irrigated wheat. Aust J Plant Physiol 27:625–637

    CAS  Google Scholar 

  • Barbour MM, Andrews TJ, Farquhar GD (2001) Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Aust J Plant Physiol 28:335–348

    CAS  Google Scholar 

  • Barbour MM, Roden JS, Farquhar GD, Ehleringer JR (2004) Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect. Oecologia 138:426–435. doi:10.1007/s00442-003-1449-3

    Article  PubMed  Google Scholar 

  • Barker T, Campos H, Cooper M et al (2005) Improving drought tolerance in maize. Plant Breed Rev 25:173–253

    CAS  Google Scholar 

  • Betrán FJ, Beck D, Bänziger M, Edmeades GO (2003) Secondary traits in parental inbreds and hybrids under stress and non-stress environments in tropical maize. Field Crop Res 83:51–65. doi:10.1016/S0378-4290(03)00061-3

    Article  Google Scholar 

  • Birch CJ, Stephen K, McLean G et al (2008) Reliability of production of quick to medium maturity maize in areas of variable rainfall in north-east Australia. Aust J Exp Agric 48:326–334. doi:10.1071/EA06104

    Article  Google Scholar 

  • Cabrera-Bosquet L, Sanchez C, Araus JL (2009a) Oxygen isotope enrichment (∆18O) reflects yield potential and drought resistance in maize. Plant Cell Environ 32:1487–1499. doi:10.1111/j.1365-3040.2009.02013.x

    Article  CAS  PubMed  Google Scholar 

  • Cabrera-Bosquet L, Sanchez C, Araus JL (2009b) How yield relates to ash content, ∆13C and ∆18O in maize grown under different water regimes. Ann Bot 104:1207–1216. doi:10.1093/aob/mcp229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cabrera-Bosquet L, Albrizio R, Nogues S, Araus JL (2011) Dual ∆13C/δ18O response to water and nitrogen availability and its relationship with yield in field-grown durum wheat. Plant Cell Environ 34:418–433. doi:10.1111/j.1365-3040.2010.02252.x

    Article  CAS  PubMed  Google Scholar 

  • Cairns JE, Crossa J, Zaidi PH et al (2013) Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Sci 53:1335–1346

    Article  Google Scholar 

  • Cernusak LA, Arthur DJ, Pate JS, Farquhar GD (2003) Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in Eucalyptus globulus. Plant Physiol 131:1544–1554. doi:10.1104/pp.102.016303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55:2447–2460. doi:10.1093/jxb/erh277

    Article  CAS  PubMed  Google Scholar 

  • Cooper M, Gho C, Leafgren R et al (2014) Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J Exp Bot 65:6191–6204. doi:10.1093/jxb/eru064

    Article  CAS  PubMed  Google Scholar 

  • Sternberg SL da, Deniro et al (1986) Oxygen isotope exchange between metabolites and water during biochemical reactions leading to cellulose synthesis. Plant Physiol 82:423–427

  • Dawson TE, Ehleringer JR (1993) Isotopic enrichment of water in the “woody” tissues of plants: implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose. Geochim Cosmochim Acta 57:3487–3492. doi:10.1016/0016-7037(93)90554-A

    Article  CAS  Google Scholar 

  • Dongmann G, Nürnberg HW, Förstel H, Wagener K (1974) On the enrichment of H 182 O in the leaves of transpiring plants. Radiat Environ Biophys 11:41–52. doi:10.1007/BF01323099

    Article  CAS  PubMed  Google Scholar 

  • Edmeades GO, Bolanos J, Lafitte HR et al (1989) Traditional approaches to breeding for drought resistance in cereals. In: Baker FWG (ed) Drought resistance in cereals. ICSU and CAB1, Wallingford, UK, pp 27–52

  • Edmeades GO, Bolaños J, Hernàndez M, Bello S (1993) Causes for silk delay in a lowland tropical maize population. Crop Sci 33:1029–1035. doi:10.2135/cropsci1993.0011183X003300050031x

    Article  Google Scholar 

  • Farnham DE, Benson GO, Pearce RB et al (2003) Corn perspective and culture. In: White PJ, Johnson LA (eds) Corn: chemistry and technology, 2nd edn. Amer Assn of Cereal Chemists, St Paul, pp 1–33

    Google Scholar 

  • Farquhar G (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537. doi:10.1146/annurev.arplant.40.1.503

    Article  CAS  Google Scholar 

  • Farquhar GD, Gan KS (2003) On the progressive enrichment of the oxygen isotopic composition of water along a leaf. (Reprinted from Plant Cell and Environment vol 26, pg 801-819, 2003). Plant Cell Environ 26:1579–1597. doi: 10.1046/j.0016-8025.2001.00829.x-i1

  • Farquhar GD, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Academic Press, San Diego, pp 47–70

    Chapter  Google Scholar 

  • Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust J Plant Physiol 11:539–552

    Article  CAS  Google Scholar 

  • Farquhar GD, Cernusak LA, Barnes B (2007) Heavy water fractionation during transpiration. Plant Physiol 143:11–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Felker FC, Shannon JC (1980) Movement of 14C-labeled assimilates into kernels of Zea mays L. Plant Physiol 65:864–870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferrante A, Savin R, Slafer GA (2010) Floret development of durum wheat in response to nitrogen availability. J Exp Bot 61:4351–4359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferrio JP, Mateo MA, Bort J et al (2007) Relationships of grain δ13C and δ18O with wheat phenology and yield under water-limited conditions. Ann Appl Biol 150:207–215. doi:10.1111/j.1744-7348.2007.00115.x

    Article  CAS  Google Scholar 

  • Gan KS, Wong SC, Yong JWH, Farquhar GD (2003) Evaluation of models of leaf water 18O enrichment using measurements of spatial patterns of vein xylem water, leaf water and dry matter in maize leaves. Plant Cell Environ 26:1479–1495. doi:10.1046/j.1365-3040.2003.01070.x

    Article  Google Scholar 

  • Gessler A, Ferrio JP, Hommel R et al (2014) Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol 00:1–23. doi:10.1093/treephys/tpu040

    Google Scholar 

  • Gonfiantini R, Gratziu S, Tongiorgi E (1965) Oxygen isotopic composition of water in leaves. In: Proceedings of the Symposium on the use of isotopes and radiation in soil-plant nutrition studies, Ankara 1965. IAEA, Vienna pp 405–410

  • Griffith SM, Jones RJ, Brenner ML (1987) In vitro sugar transport in Zea mays L. kernels. Plant Physiol 84:472–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Helliker BR, Ehleringer JR (2000) Establishing a grassland signature in veins: 18O in the leaf water of C3 and C4 grasses. Proc Natl Acad Sci USA 97:7894–7898. doi:10.1073/pnas.97.14.7894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Helliker BR, Ehleringer JR (2002) Differential 18O enrichment of leaf cellulose in C3 versus C4 grasses. Funct Plant Biol 29:435–442. doi:10.1017/PP01122

    Article  CAS  Google Scholar 

  • Holzkamper A, Calanca P, Fuhrer J (2013) Identifying climatic limitations to grain maize yield potentials using a suitability evaluation approach. Agric For Meteorol 168:149–159. doi:10.1016/j.agrformet.2012.09.004

    Article  Google Scholar 

  • Hubick KT, Hammer GL, Farquhar GD et al (1990) Carbon isotope discrimination varies genetically in C4 species. Plant Physiol 92:534–537. doi:10.1104/pp.92.2.534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    Article  CAS  PubMed  Google Scholar 

  • Monneveux P, Sheshshayee MS, Akhter J, Ribaut J-M (2007) Using carbon isotope discrimination to select maize (Zea mays L.) inbred lines and hybrids for drought tolerance. Plant Sci 173:390–396. doi:10.1016/j.plantsci.2007.06.003

    Article  CAS  Google Scholar 

  • Nelson O, Pan D (1995) Starch synthesis in maize endosperms. Annu Rev Plant Physiol Plant Mol Biol 46:475–496. doi:10.1146/annurev.pp.46.060195.002355

    Article  CAS  Google Scholar 

  • Palta JA, Gregory PJ (1997) Drought affects the fluxes of carbon to roots and soil in 13C pulse-labelled plants of wheat. Soil Biol Biochem 29:1395–1403. doi:10.1016/S0038-0717(97)00050-3

    Article  CAS  Google Scholar 

  • Pande P, Datta P, Bhattacharya S, Tyagi S (1995) Post-anthesis metabolic-enrichment of H 182 O in wheat grain. Indian J Exp Biol 33:394–396

    Google Scholar 

  • Pinheiro B, Autin R, Carmo M, Hall M (2000) Carbon isotope discrimination and yield of upland rice as affected by drought at flowering. Pesqui Agropecuária Bras 35:1939–1947. doi:10.1590/S0100-204X2000001000004

    Article  Google Scholar 

  • Rebetzke GJ, Condon AG, Richards RA, Farquhar GD (2002) Selection for reduced carbon isotope discrimination increases aerial biomass and grain yield of rainfed bread wheat. Crop Sci 42:739–745

    Article  Google Scholar 

  • Roden JS, Ehleringer JR (1999) Hydrogen and oxygen isotope ratios of tree-ring cellulose for riparian trees grown long-term under hydroponically controlled environments. Oecologia 121:467–477. doi:10.1007/s004420050953

    Article  Google Scholar 

  • Song X, Farquhar GD, Gessler A, Barbour MM (2014) Turnover time of the non-structural carbohydrate pool influences δ18O of leaf cellulose. Plant Cell Environ 37:2500–2507. doi:10.1111/pce.12309

    Article  CAS  PubMed  Google Scholar 

  • Weber VS, Araus JL, Cairns JE et al (2012) Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crop Res 128:82–90. doi:10.1016/j.fcr.2011.12.016

    Article  Google Scholar 

  • Wen W, Araus JL, Shah T et al (2011) Molecular characterization of a diverse maize inbred line collection and its potential utilization for stress tolerance improvement. Crop Sci 51:2569–2581. doi:10.2135/cropsci2010.08.0465

    Article  Google Scholar 

  • Yakir D, Deniro MJ, Gat JR (1990) Natural deuterium and oxygen-18 enrichment in leaf water of cotton plants grown under wet and dry conditions—evidence for water compartmentation and its dynamics. Plant Cell Environ 13:49–56. doi:10.1111/j.1365-3040.1990.tb01298.x

    Article  Google Scholar 

  • Yousfi S, Dolores Serret M, Jose Marquez A et al (2012) Combined use of δ13C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit. New Phytol 194:230–244. doi:10.1111/j.1469-8137.2011.04036.x

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Spiro B, McGrath SP (2001) Trends in 13C/12C ratios and C isotope discrimination of wheat since 1845. Oecologia 128:336–342. doi:10.1007/s004420100663

    Article  CAS  PubMed  Google Scholar 

  • Zia S, Romano G, Spreer W et al (2013) Infrared thermal imaging as a rapid tool for identifying water-stress tolerant maize genotypes of different phenology. J Agron Crop Sci 199:75–84. doi:10.1111/j.1439-037X.2012.00537.x

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the projects Precision phenotyping for improving drought stress tolerant maize in southern Asia and eastern Africa (08.7860.3-001.00) funded by the German Ministry for Economic Cooperation and Development (BMZ), and Drought Tolerant Maize for Africa, funded by the Bill and Melinda Gates Foundation. We thank Ciro Sánchez and all the staff at the CIMMYT station in Tlaltizapán for their valuable support on the field trials. JPF was supported by the Ramón y Cajal program (RYC-2008-02050) and the Marie Curie Reintegration Grant, SMARTREES (PERG05-GA-2009-246725, FP7, European Union). We also thank Gustavo Slafer and Roxana Savin for providing the pot experiment facilities, and to Ariel Ferrante for his useful advice. We also thank Pilar Sopeña for technical assistance in the lab. Thanks go to Kiko Girbes for designing Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pedro Ferrio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Bragado, R., Araus, J.L., Scheerer, U. et al. Factors preventing the performance of oxygen isotope ratios as indicators of grain yield in maize. Planta 243, 355–368 (2016). https://doi.org/10.1007/s00425-015-2411-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2411-4

Keywords

Navigation