Skip to main content

Advertisement

Log in

Phenotypic and genetic characterization of varicella-zoster virus mutants resistant to acyclovir, brivudine and/or foscarnet

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

An Erratum to this article was published on 23 June 2012

Abstract

The treatment of varicella-zoster virus (VZV) reactivation is based on nucleoside analogues acyclovir (ACV) and bromevinyldeoxyuridine (BVdU) and a phosphonic acid derivative (PFA). Drug-resistant mutants of 3 wild-type (WT) VZV strains were obtained by exposure of human retinal pigment epithelial (hRPE) cells inoculated with cell-free WT virus at increasing concentrations of ACV, BVdU, and PFA. In addition to single-drug resistance, a cross-resistance of isolates vs. ACV was observed for PFA-resistant strains. Single-nucleotide (nt) exchanges resulting in amino acid (aa) substitutions were observed within the DNA polymerase (ORF 28) and/or thymidine kinase (ORF 36) of 3 of 3 ACV-, 2 of 3 BVdU-, and 3 of 3 PFA-resistant strains. Interestingly, aa substitutions were also observed within the immediate-early regulatory protein and major transactivator IE 62 (ORF 62), and the envelope glycoprotein (g) I (ORF 67) of the BVdU-resistant mutant of strain PP. No aa substitutions were observed in the protein sequences of gene products encoded by ORF 5 (gK, a glycoprotein arranging exocytosis of viral-loaded vacuoles), ORF 14 (gC), ORF 31 (gB), ORF 37 (gH), ORF 47 (protein kinase, involved in major phosphorylating processes), ORF 60 (gL, important for syncytia forming of infected cells in combination with gH), ORF 63 (major transactivator, part of the tegument), and ORF 68 (gE, triggers fusion of viral loaded vacuoles with cell membranes by heterodimerizing with gI). Phenotypic analysis revealed a slow-growth phenotype and a formation of smaller plaques of resistant mutants. Future studies should prove the presence of those resistant mutants in herpes zoster patients and the potential consequences of their putative reduced fitness on the success of therapeutical interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wicker S, Rabenau HF, Gottschalk R, Doerr HW, Allwinn R (2007) Seroprevalence of vaccine-preventable, blood transmissible viral infections (measles, mumps, rubella, VZV, polio, HBV, HCV, HIV) in medical students. Med Microbiol Immunol 196(3):145–150

    Article  PubMed  Google Scholar 

  2. Mustafa MB, Arduino PG, Porter SR (2009) Varicella zoster virus: review of its management. J Oral Pathol Med 38(9):673–688

    Article  PubMed  CAS  Google Scholar 

  3. De Clercq E (2008) The discovery of antiviral agents: ten different compounds, ten different stories. Med Res Rev 28(6):929–953

    Article  PubMed  Google Scholar 

  4. CDC, Infectious Disease Society of America, and the American Society of Blood and Marrow Transplantation (2001) Guidelines for preventing opportunistic infections among hematopoietic stem cell transplant recipients. Recommendations of CDC, the Infectious Disease Society of America, and the American Society of Blood and Marrow Transplantation. Cytotherapy 3(1):41–54

    Article  Google Scholar 

  5. Kim DH, Kumar D, Messner HA, Minden M, Gupta V, Kuruvilla J, Chae YS, Sohn SK, Lipton JH (2008) Clinical efficacy of prophylactic strategy of long-term low-dose acyclovir for Varicella-Zoster virus infection after allogeneic peripheral blood stem cell transplantation. Clin Transplant 22(6):770–779

    Article  PubMed  Google Scholar 

  6. Aiuti M (2006) Failure to reconstitute CD4 T-Cells despite suppression of HIV replication under HAART. AIDS Review

  7. Gershon A (2001) Prevention and treatment of VZV infections in patients with HIV. Herpes 8:2

    Google Scholar 

  8. Harper DR, Mathieu N, Mullarkey J (1998) High-titre, cryostable cell-free varicella zoster virus. Arch Virol 143:1163–1170

    Article  PubMed  CAS  Google Scholar 

  9. Schmidt-Chanasit J, Bleymehl K, Rabenau HF, Ulrich RG, Cinatl J Jr, Doerr HW (2008) In vitro replication of varicella-zoster virus in human retinal pigment epithelial cells. J Clin Microbiol 46:2122–2124

    Article  PubMed  Google Scholar 

  10. Cinatl J Jr, Blaheta R, Bittoova M, Scholz M, Margraf S, Vogel JU, Cinatl J, Doerr HW (2000) Decreased neutrophil adhesion to human cytomegalovirus-infected retinal pigment epithelial cells is mediated by virus-induced up-regulation of Fas ligand independent of neutrophil apoptosis. J Immunol 165:4405–4413

    PubMed  CAS  Google Scholar 

  11. Andrei G, De Clercq E, Snoeck R (2004) In vitro selection of drug-resistant varicella-zoster virus (VZV) mutants (OKA strain): differences between acyclovir, penciclovir? Antiviral Res 61(3):181–187

    Article  PubMed  CAS  Google Scholar 

  12. Davison AJ, Scott JE (1986) The complete DNA sequence of varicella-zoster virus. J Gen Virol 67(Pt 9):1759–1816

    Article  PubMed  CAS  Google Scholar 

  13. Faga B, Maury W, Bruckner DA, Grose C (2001) Identification and mapping of single nucleotide polymorphisms in the varicella-zoster virus genome. Virology 280(1):1–6

    Article  PubMed  CAS  Google Scholar 

  14. Grose C, Tyler S, Peters G, Hiebert J, Stephens GM, Ruyechan WT, Jackson W, Storlie J, Tipples GA (2004) Complete DNAsequence analyses of the first two varicella-zoster virus glycoprotein E (D150 N) mutant viruses found in North America: evolution of genotypes with an accelerated cell spread phenotype. J Virol 78(13):6799–6807

    Article  PubMed  CAS  Google Scholar 

  15. Loparev VN, Rubtcova EN, Bostik V, Tzaneva V, Sauerbrei A, Robo A, Sattler-Dornbacher E, Hanovcova I, Stepanova V, Splino M, Eremin V, Koskiniemi M, Vankova OE, Schmid DS (2009) Distribution of varicella-zoster virus (VZV) wild-type genotypes in northern and southern Europe: evidence for high conservation of circulating genotypes. Virology 383(2):216–225

    Article  PubMed  CAS  Google Scholar 

  16. Loparev VN, Rubtcova EN, Bostik V, Govil D, Birch CJ, Druce JD, Schmid DS, Croxson MC (2007) Identification of five major, two minor genotypes of varicella-zoster virus strains: a practical two-amplicon approach used to genotype clinical isolates in Australia, New Zealand. J Virol 81(23):12758–12765

    Article  PubMed  CAS  Google Scholar 

  17. Norberg P, Liljeqvist JA, Bergström T, Sammons S, Schmid DS, Loparev VN (2006) Complete-genome phylogenetic approach to varicella-zoster virus evolution: genetic divergence, evidence for recombination. J Virol 80(19):9569–9576

    Article  PubMed  CAS  Google Scholar 

  18. Peters GA, Tyler SD, Grose C, Severini A, Gray MJ, Upton C, Tipples GA (2006) A full-genome phylogenetic analysis of varicella-zoster virus reveals a novel origin of replication-based genotyping scheme and evidence of recombination between major circulating clades. J Virol 80(19):9850–9860

    Article  PubMed  CAS  Google Scholar 

  19. Santos RA, Hatfield CC, Cole NL, Padilla JA, Moffat JF, Arvin AM, Ruyechan WT, Hay J, Grose C (2000) Varicella-zoster virus gE escape mutant VZV-MSP exhibits an accelerated cell-to-cell spread phenotype in both infected cell cultures and SCID-hu mice. Virology 275(2):306–317

    Article  PubMed  CAS  Google Scholar 

  20. Wagenaar TR, Chow VT, Buranathai C, Thawatsupha P, Grose C (2003) The out of Africa model of varicella-zoster virus evolution: single nucleotide polymorphisms and private alleles distinguish Asian clades from European/North American clades. Vaccine 21(11–12):1072–1081

    Article  PubMed  CAS  Google Scholar 

  21. Boivin G, Edelman CK, Pedneault L, Talarico CL, Biron KK, Balfour HH Jr (1994) Phenotypic, genotypic characterization of acyclovir-resistant varicella-zoster viruses isolated from persons with AIDS. J Infect Dis 170(1):68–75

    Article  PubMed  CAS  Google Scholar 

  22. Fillet AM, Dumont B, Caumes E, Visse B, Agut H, Bricaire F, Huraux JM (1998) Acyclovir-resistant varicella-zoster virus: phenotypic, genetic characterization. J Med Virol 55(3):250–254

    Article  PubMed  CAS  Google Scholar 

  23. Saint-Léger E, Caumes E, Breton G, Douard D, Saiag P, Huraux JM, Bricaire F, Agut H, Fillet AM (2001) Clinical and virologic characterization of acyclovir-resistant varicella-zoster viruses isolated from 11 patients with acquired immunodeficiency syndrome. Clin Infect Dis 33(12):2061–2067

    Article  PubMed  Google Scholar 

  24. Wroblewska Z, Valyi-Nagy T, Otte J, Dillner A, Jackson A, Sole DP, Fraser NW (1993) A mouse model for varicella-zoster virus latency. Microb Pathog 15(2):141–151

    Article  PubMed  CAS  Google Scholar 

  25. El Omari K, Liekens S, Bird LE, Balzarini J, Stammers DK (2006) Mutations distal to the substrate site can affect varicella zoster virus thymidine kinase activity: implications for drug design. Mol Pharmacol 69(6):1891–1896

    Article  PubMed  CAS  Google Scholar 

  26. Blair E, Darby G, Gough G, Littler E, Rowland D, Tisdale M (1998) Antiviral Therapy. Bios Scientific publishers Ltd, Oxford, UK

    Google Scholar 

  27. Gibbs JS, Chiou HC, Bastow KF, Cheng YC, Coen DM (1988) Identification of amino acids in herpes simplex virus DNA polymerase involved in substrate, drug recognition. Proc Natl Acad Sci U S A 85(18):6672–6676

    Article  PubMed  CAS  Google Scholar 

  28. Larder BA, Kemp SD, Darby G (1987) Related functional domains in virus DNA polymerases. EMBO J 6(1):169–175

    PubMed  CAS  Google Scholar 

  29. Visse B, Huraux JM, Fillet AM (1999) Point mutations in the varicella-zoster virus DNA polymerase gene confer resistance to foscarnet, slow growth phenotype. J Med Virol 59(1):84–90

    Article  PubMed  CAS  Google Scholar 

  30. Palestine AG, Rodrigues MM, Macher AM, Chan CC, Lane HC, Fauci AS, Masur H, Longo D, Reichert CM, Steis R et al (1984) Ophthalmic involvement in acquired immunodeficiency syndrome. Ophthalmology 91(9):1092–1099

    PubMed  CAS  Google Scholar 

  31. Sato B, Ito H, Hinchliffe S, Sommer MH, Zerboni L, Arvin AM (2003) Mutational analysis of open reading frames 62 and 71, encoding the varicella-zoster virus immediate-early transactivating protein, IE62, and effects on replication in vitro and in skin xenografts in the SCID-hu mouse in vivo. J Virol 77(10):5607–5620

    Article  PubMed  CAS  Google Scholar 

  32. Baudoux L, Defechereux P, Schoonbroodt S, Merville MP, Rentier B, Piette J (1995) Mutational analysis of varicella-zoster virus major immediate-early protein IE62. Nucleic Acids Res 23(8):1341–1349

    Article  PubMed  CAS  Google Scholar 

  33. Ruyechan WT (1983) The major herpes simplex virus DNA-binding protein holds single-stranded DNA in an extended configuration. J Virol 46(2):661–666

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Hospital of the Johann Wolfgang Goethe University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Schmidt-Chanasit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleymehl, K., Cinatl, J. & Schmidt-Chanasit, J. Phenotypic and genetic characterization of varicella-zoster virus mutants resistant to acyclovir, brivudine and/or foscarnet. Med Microbiol Immunol 200, 193–202 (2011). https://doi.org/10.1007/s00430-011-0191-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-011-0191-4

Keywords

Navigation