Skip to main content

Advertisement

Log in

Widespread expression of perilipin 5 in normal human tissues and in diseases is restricted to distinct lipid droplet subpopulations

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Diseases associated with the accumulation of lipid droplets are increasing in western countries. Lipid droplet biogenesis, structure and degradation are regulated by proteins of the perilipin family. Perilipin 5 has been shown to regulate basal lipolysis in oxidative tissues. We examine perilipin 5 in normal human tissues and in diseases using protein biochemical and microscopic techniques. Perilipin 5 was constitutively located at small lipid droplets in skeletal myocytes, cardiomyocytes and brown adipocytes. In addition, perilipin 5 was detected in the epithelia of the gastrointestinal and urogenital tract, especially in hepatocytes, the mitochondria-rich parietal cells of the stomach, tubular kidney cells and ductal cells of the salivary gland and pancreas. Granular cytoplasmic expression, without a lipid droplet-bound localization was detected elsewhere. In cardiomyopathies, in skeletal muscle diseases and during hepatocyte steatogenesis, perilipin 5 was upregulated and localized to larger and more numerous lipid droplets. In steatotic human hepatocytes, perilipin 5 was moderately increased and colocalized with perilipins 1 and 2 but not with perilipin 3 at lipid droplets. In liver diseases implicated in alterations of mitochondria, such as mitochondriopathies, alcoholic liver disease, Wilson’s disease and acute liver injury, perilipin 5 was frequently localized to small lipid droplets and less in the cytoplasm. In tumorigenesis, perilipin 5 was especially upregulated in lipo-, leio- and rhabdomyosarcoma and hepatocellular and renal cell carcinoma. In summary, our study provides evidence that perilipin 5 is not restricted to certain cell types but localizes to distinct lipid droplet subpopulations reflecting a possible function in oxidative energy supply in normal tissues and in diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LD:

Lipid droplet

MCP:

Mitochondriopathy

MLDP:

Myocardial lipid droplet protein

PAT:

Perilipin–adipophilin–TIP47 family of proteins

TG:

Triacylglycerides

References

  • Bartholomew SR, Bell EH, Summerfield T, Newman LC, Miller EL, Patterson B, Niday ZP, Ackerman WE, Tansey JT (2012) Distinct cellular pools of perilipin 5 point to roles in lipid trafficking. Biochim Biophys Acta 1821:268–278

    Article  PubMed  CAS  Google Scholar 

  • Bosma M, Minnaard R, Sparks LM, Schaart G, Losen M, de Baets MH, Duimel H, Kersten S, Bickel PE, Schrauwen P, Hesselink MK (2012) The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria. Histochem Cell Biol 137:205–216

    Article  PubMed  CAS  Google Scholar 

  • Bosma M, Sparks LM, Hooiveld GJ, Jorgensen JA, Houten SM, Schrauwen P, Kersten S, Hesselink MK (2013) Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity. Biochim Biophys Acta 1831:844–852

    Article  PubMed  CAS  Google Scholar 

  • Brasaemle DL (2013) Perilipin 5: putting the brakes on lipolysis. J Lipid Res 54:876–877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, Londos C (1997) Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 38:2249–2263

    PubMed  CAS  Google Scholar 

  • Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474

    Article  PubMed  CAS  Google Scholar 

  • Dalen KT, Schoonjans K, Ulven SM, Weedon-Fekjaer MS, Bentzen TG, Koutnikova H, Auwerx J, Nebb HI (2004) Adipose tissue expression of the lipid droplet-associating proteins S3-12 and perilipin is controlled by peroxisome proliferator-activated receptor-gamma. Diabetes 53:1243–1252

    Article  PubMed  CAS  Google Scholar 

  • Dalen KT, Dahl T, Holter E, Arntsen B, Londos C, Sztalryd C, Nebb HI (2007) LSDP5 is a PAT protein specifically expressed in fatty acid oxidizing tissues. Biochim Biophys Acta 1771:210–227

    Article  PubMed  CAS  Google Scholar 

  • Diaz E, Pfeffer SR (1998) TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93:433–443

    Article  PubMed  CAS  Google Scholar 

  • Gallardo AH, Marui A (2016) The aftermath of the Fukushima nuclear accident: measures to contain groundwater contamination. Sci Total Environ 547:261–268

    Article  PubMed  CAS  Google Scholar 

  • Granneman JG, Moore HP, Mottillo EP, Zhu Z, Zhou L (2011) Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. J Biol Chem 286:5126–5135

    Article  PubMed  CAS  Google Scholar 

  • Greenberg AS, Obin MS (2008) Many roads lead to the lipid droplet. Cell Metab 7:472–473

    Article  PubMed  CAS  Google Scholar 

  • Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C (1991) Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266:11341–11346

    PubMed  CAS  Google Scholar 

  • Hall AM, Brunt EM, Chen Z, Viswakarma N, Reddy JK, Wolins NE, Finck BN (2010) Dynamic and differential regulation of proteins that coat lipid droplets in fatty liver dystrophic mice. J Lipid Res 51:554–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heid HW, Moll R, Schwetlick I, Rackwitz HR, Keenan TW (1998) Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res 294:309–321

    Article  PubMed  CAS  Google Scholar 

  • Heid H, Rickelt S, Zimbelmann R, Winter S, Schumacher H, Dorflinger Y (2013) Lipid droplets, perilipins and cytokeratins - unravelled liaisons in epithelium-derived cells. PLoS One 8:e63061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hickenbottom SJ, Kimmel AR, Londos C, Hurley JH (2004) Structure of a lipid droplet protein; the PAT family member TIP47. Structure 12:1199–1207

    Article  PubMed  CAS  Google Scholar 

  • Jiang HP, Serrero G (1992) Isolation and characterization of a full-length cDNA coding for an adipose differentiation-related protein. Proc Natl Acad Sci U S A 89:7856–7860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimmel AR, Brasaemle DL, McAndrews-Hill M, Sztalryd C, Londos C (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51:468–471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuramoto K, Okamura T, Yamaguchi T, Nakamura TY, Wakabayashi S, Morinaga H, Nomura M, Yanase T, Otsu K, Usuda N, Matsumura S, Inoue K, Fushiki T, Kojima Y, Hashimoto T, Sakai F, Hirose F, Osumi T (2012) Perilipin 5, a lipid droplet-binding protein, protects heart from oxidative burden by sequestering fatty acid from excessive oxidation. J Biol Chem 287:23852–23863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langhi C, Marquart TJ, Allen RM, Baldan A (2014) Perilipin-5 is regulated by statins and controls triglyceride contents in the hepatocyte. J Hepatol 61:358–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mason RR, Watt MJ (2015) Unraveling the roles of PLIN5: linking cell biology to physiology. Trends Endocrinol Metab 26:144–152

    Article  PubMed  CAS  Google Scholar 

  • Mason RR, Mokhtar R, Matzaris M, Selathurai A, Kowalski GM, Mokbel N, Meikle PJ, Bruce CR, Watt MJ (2014) PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle. Mol Metab 3:652–663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minnaard R, Schrauwen P, Schaart G, Jorgensen JA, Lenaers E, Mensink M, Hesselink MK (2009) Adipocyte differentiation-related protein and OXPAT in rat and human skeletal muscle: involvement in lipid accumulation and type 2 diabetes mellitus. J Clin Endocrinol Metab 94:4077–4085

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40:325–438

    Article  PubMed  CAS  Google Scholar 

  • Pawella LM, Hashani M, Eiteneuer E, Renner M, Bartenschlager R, Schirmacher P, Straub BK (2014) Perilipin discerns chronic from acute hepatocellular steatosis. J Hepatol 60:633–642

    Article  PubMed  CAS  Google Scholar 

  • Pollak NM, Schweiger M, Jaeger D, Kolb D, Kumari M, Schreiber R, Kolleritsch S, Markolin P, Grabner GF, Heier C, Zierler KA, Rulicke T, Zimmermann R, Lass A, Zechner R, Haemmerle G (2013) Cardiac-specific overexpression of perilipin 5 provokes severe cardiac steatosis via the formation of a lipolytic barrier. J Lipid Res 54:1092–1102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanders MA, Madoux F, Mladenovic L, Zhang H, Ye X, Angrish M, Mottillo EP, Caruso JA, Halvorsen G, Roush WR, Chase P, Hodder P, Granneman JG (2015) Endogenous and synthetic ABHD5 ligands regulate ABHD5-perilipin interactions and lipolysis in fat and muscle. Cell Metab 22:851–860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scherer PE, Bickel PE, Kotler M, Lodish HF (1998) Cloning of cell-specific secreted and surface proteins by subtractive antibody screening. Nat Biotechnol 16:581–586

    Article  PubMed  CAS  Google Scholar 

  • Straub BK, Stoeffel P, Heid H, Zimbelmann R, Schirmacher P (2008) Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology 47:1936–1946

    Article  PubMed  CAS  Google Scholar 

  • Straub BK, Herpel E, Singer S, Zimbelmann R, Breuhahn K, Macher-Goeppinger S, Warth A, Lehmann-Koch J, Longerich T, Heid H, Schirmacher P (2010) Lipid droplet-associated PAT-proteins show frequent and differential expression in neoplastic steatogenesis. Mod Pathol 23:480–492

    Article  PubMed  CAS  Google Scholar 

  • Straub BK, Gyoengyoesi B, Koenig M, Hashani M, Pawella LM, Herpel E, Mueller W, Macher-Goeppinger S, Heid H, Schirmacher P (2013) Adipophilin/perilipin-2 as a lipid droplet-specific marker for metabolically active cells and diseases associated with metabolic dysregulation. Histopathology 62:617–631

    Article  PubMed  Google Scholar 

  • Takahashi Y, Shinoda A, Inoue J, Sato R (2010) The gene expression of the myocardial lipid droplet protein is highly regulated by PPARgamma in adipocytes differentiated from MEFs or SVCs. Biochem Biophys Res Commun 399:209–214

    Article  PubMed  CAS  Google Scholar 

  • Trevino MB, Mazur-Hart D, Machida Y, King T, Nadler J, Galkina EV, Poddar A, Dutta S, Imai Y (2015) Liver perilipin 5 expression worsens hepatosteatosis but not insulin resistance in high fat-fed mice. Mol Endocrinol 29:1414–1425

    Article  PubMed  PubMed Central  Google Scholar 

  • van Herpen NA, Schrauwen-Hinderling VB (2008) Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol Behav 94:231–241

    Article  PubMed  CAS  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Sztalryd C (2011) Oxidative tissue: perilipin 5 links storage with the furnace. Trends Endocrinol Metab 22:197–203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Sreenevasan U, Hu H, Saladino A, Polster BM, Lund LM, Gong DW, Stanley WC, Sztalryd C (2011a) Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res 52:2159–2168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Bell M, Sreenivasan U, Hu H, Liu J, Dalen K, Londos C, Yamaguchi T, Rizzo MA, Coleman R, Gong D, Brasaemle D, Sztalryd C (2011c) Unique regulation of adipose triglyceride lipase (ATGL) by perilipin 5, a lipid droplet-associated protein. J Biol Chem 286:15707–15715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Sreenivasan U, Gong DW, O'Connell KA, Dabkowski ER, Hecker PA, Ionica N, Konig M, Mahurkar A, Sun Y, Stanley WC, Sztalryd C (2013) Cardiomyocyte specific perilipin 5 over expression leads to myocardial steatosis, and modest cardiac dysfunction. J Lipid Res 54:953–965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang C, Zhao Y, Gao X, Li L, Yuan Y, Liu F, Zhang L, Wu J, Hu P, Zhang X, Gu Y, Xu Y, Wang Z, Li Z, Zhang H, Ye J (2015) Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis. Hepatology 61:870–882

    Article  PubMed  CAS  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  • Witzel HR, Jungblut B, Choe CP, Crump JG, Braun T, Dobreva G (2012) The LIM protein Ajuba restricts the second heart field progenitor pool by regulating Isl1 activity. Dev Cell 23:58–70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolins NE, Rubin B, Brasaemle DL (2001) TIP47 associates with lipid droplets. J Biol Chem 276:5101–5108

    Article  PubMed  CAS  Google Scholar 

  • Wolins NE, Skinner JR, Schoenfish MJ, Tzekov A, Bensch KG, Bickel PE (2003) Adipocyte protein S3-12 coats nascent lipid droplets. J Biol Chem 278:37713–37721

    Article  PubMed  CAS  Google Scholar 

  • Wolins NE, Brasaemle DL, Bickel PE (2006a) A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett 580:5484–5491

    Article  PubMed  CAS  Google Scholar 

  • Wolins NE, Quaynor BK, Skinner JR, Tzekov A, Croce MA, Gropler MC, Varma V, Yao-Borengasser A, Rasouli N, Kern PA, Finck BN, Bickel PE (2006b) OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes 55:3418–3428

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Matsushita S, Motojima K, Hirose F, Osumi T (2006) MLDP, a novel PAT family protein localized to lipid droplets and enriched in the heart, is regulated by peroxisome proliferator-activated receptor alpha. J Biol Chem 281:14232–14240

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We especially thank Tore Kempf (Functional Proteome Analysis, German Cancer Research Center Heidelberg) for mass spectrometric analyses. Additionally, we thank Elisabeth Specht-Delius, Eva Eiteneuer and Sarah Meßnard for histochemical and immunohistochemical stainings and Zlata Antoni for the ultrastructural analysis (all Institute of Pathology, Heidelberg), as well as Sabine Jakubowski for the excellent technical assistance (Institute of Pathology, Mainz). We thank Hans Heid and Werner W. Franke (German Cancer Research Center Heidelberg) for helpful discussions. All human tissue specimens were provided by the tissue bank of the National Center for Tumor Diseases (NCT, Heidelberg, Germany). Confocal laser scanning microscopy was done with a confocal A1R laser scanning microscope (Nikon Imaging Center, Bioquant Heidelberg).

Funding

The study was funded by grants of the Deutsche Forschungsgemeinschaft to BKS (STR-1160/1-1 and 1-2). MH was stipend of the Erasmus Basileus-Program, BKS of the Olympia-Morata Program of the Medical Faculty of Heidelberg University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Katharina Straub.

Ethics declarations

Ethic statement

The research involving human tissues was approved by the ethics committee of the University of Heidelberg, no. 206/2005 and 207/2005.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Fig. 1

Validation of perilipin 5 antibodies. HEK293T cells were transfected with expression constructs either expressing a FLAG-tagged or a non-tagged form of perilipin 5. All 3 antibodies (against the N- and C-terminus as well as against the loop) specifically detect perilipin 5. Perilipin 5 expression was analyzed with the indicated antibodies (JPG 993 kb)

High resolution image (TIF 563 kb)

Supplementary Fig. 2

Immunohistochemical analysis of normal human tissues using antibody against N-terminus of perilipin 5. Same tissues were stained as delineated in figure legend 2, in part in consecutive sections. Bars: 50 μm (JPG 4572 kb)

High resolution image (TIF 9036 kb)

Supplementary Fig. 3

Immunohistochemical analysis of normal human tissues using antibody against loop structure within perilipin 5. Same tissues were stained as delineated in figure legend 2, in part in consecutive sections. Bars: 50 μm (JPG 4707 kb)

High resolution image (TIF 9081 kb)

Supplementary Fig. 4

Corresponding negative control reaction of the immunohistochemical analyses shown in Fig. 2 and Supplementary Figs. 2 and 3. Same tissues were stained without primary antibody but respective (guinea pig) secondary antibody as delineated in figure legend 2, partly in consecutive sections. Bars: 50 μm (JPG 4357 kb)

High resolution image (TIF 8139 kb)

Supplementary Fig. 5

Laser scanning immunofluorescence microscopy of perilipin 5 at LDs. (a) Immunofluorescence microscopy of perilipin 5 (antibody against C-terminus) (PLIN5), with BODIPY and DAPI in hepatocytes of human steatotic liver, myocytes of skeletal muscle and parietal cells of stomach. Arrows indicate strong perilipin 5 staining at LDs. Bars: 25 μm (overview images) and 5 μm (magnified images). (b) Immunofluorescence microscopy of perilipin 5 (antibody against C-terminus) (PLIN5), with BODIPY and DAPI in transfected cultured cells of the human hepatocellular carcinoma cell line HepG2. Perilipin 5 localized at LDs but also partially showed cytoplasmic localization. Bar: 5 μm (JPG 2704 kb)

High resolution image (TIF 3613 kb)

Supplementary Fig. 6

Localization of perilipin 5 to parietal cells in stomach. Perilipin 5 (antibody against C-terminus) is localized to ring-like structures in gastric corpus mucosa. Double immunofluorescence staining reveals perilipin 5-expression in E-Cadherin (a, a‘) and H+/K+ ATPase-ß (b, b‘)-positive gastric parietal cells. Same staining pattern is observed with all three perilipin 5 antibodies. Bar: 200 μm (JPG 1727 kb)

High resolution image (TIF 2646 kb)

Supplementary Fig. 7

Immunoprecipitation of perilipin 5 with plectin. Perilipin 5 was immunoprecipitated from whole tissue lysates of human skeletal muscle using an antibody against the N-terminus of perilipin 5 (Ab). Rabbit normal serum was used as negative control (NS). IP supernatant (1), IP sediment (2), IP sediment rest (3) and IP control fractions, IP supernatant (4), IP sediment (5) IP sediment rest (6). Molecular mass markers are given on the left side. (JPG 131 kb)

High resolution image (TIF 144 kb)

Supplementary Fig. 8

Partial colocalization of perilipin 5 with plectin in human skeletal muscle. Immunostaining for perilipin 5 (antibody against N-terminus) alone and together with plectin in cryosections of skeletal muscle. Cell nuclei were stained with HOECHST. Perilipin 5 was detected in a punctuated as well as minute ring-shaped pattern. Surprisingly, perilipin 5 showed partial co-localization with plectin at the z-discs of the skeletal myocytes. (JPG 2262 kb)

High resolution image (TIF 2921 kb)

Supplementary Fig. 9

Perilipin 5 in skeletal muscle disease. Perilipin 5 (antibody against C-terminus) is localized to small LDs in striated myocytes in normal human skeletal muscle and larger and more numerous LDs in peripheral artery occlusive disease (PAOD). Bars: 50 μm (JPG 1170 kb)

High resolution image (TIF 2300 kb)

Supplementary Fig. 10

Perilipin 5 expression in normal human liver, hepatocyte steatogenesis and hepatocellular carcinoma. Cytoplasmic perilipin 5 staining (antibody against C-terminus) in hepatocytes of normal human liver, localization at small LDs in microvesicular steatosis in hepatocytes of all 3 acinar zones, as well as in neoplastic steatogenesis in human hepatocellular carcinoma. Bars: 200 and 100 μm, respectively. (JPG 2529 kb)

High resolution image (TIF 4149 kb)

Supplementary Fig. 11

Perilipin 5 expression in human tumors. Perilipin 5 (antibody against C-terminus) predominantly localizes to the cytoplasm in squamous cell carcinoma of the oral cavity and hypopharynx and invasive adenocarcinoma of the breast (NST). Perilipin 5 surrounds small LDs in papillary thyroid cancer, pulmonal adenocarcinoma, signet cell and intestinal type gastric cancer, adenocarcinoma of the colon, hepatocellular carcinoma, renal cell carcinoma, ductal adenocarcinoma of the pancreas and acinar adenocarcinoma of the prostate gland. Bar: 100 μm (JPG 4097 kb)

High resolution image (TIF 7415 kb)

ESM 1

(DOCX 18 kb)

ESM 2

(DOCX 17 kb)

ESM 3

(DOCX 17 kb)

ESM 4

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashani, M., Witzel, H.R., Pawella, L.M. et al. Widespread expression of perilipin 5 in normal human tissues and in diseases is restricted to distinct lipid droplet subpopulations. Cell Tissue Res 374, 121–136 (2018). https://doi.org/10.1007/s00441-018-2845-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2845-7

Keywords

Navigation