Skip to main content

Advertisement

Log in

Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps

  • Community ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Fires shape fundamental properties of many forest ecosystems and climate change will increase their relevance in regions where fires occur infrequently today. In ecosystems that are not adapted to fire, post-fire tree recruitment is often sparse, a fact that might be attributed to a transient lack of mycorrhizae. Ectomycorrhizal (EcM) fungi play an important role for recruitment by enhancing nutrient and water uptake of their hosts. The questions arise whether and for how long the EcM community is transformed by fire. We investigated the resistance and resilience of EcM fungal communities on a chronosequence of 12 Pinus sylvestris stands in Valais (Switzerland) and Val d’Aosta (Italy) affected by fire between 1990 and 2006. Soil samples from burnt and non-burnt forests were analyzed with respect to EcM fungi by means of a bioassay. The number of EcM species was significantly lower in samples from recently (2–5 years) burnt sites than non-burnt forest, and increased with time since fire reaching levels of adjacent forests after 15–18 years. Community composition changed after fire but did not converge to that of non-burnt sites over the 18 year period. Only Rhizopogon roseolus and Cenococcum geophilum were abundant in both burnt sites and adjacent forest. Our data indicate fire resistance of some EcM fungal species as well as rapid resilience in terms of species number, but not in species composition. As long as the function of different EcM species for seedling establishment is unknown, the consequences of long-term shifts in EcM community composition for tree recruitment remain unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agerer R (1987–1997) Colour atlas of ectomycorrhizae, 1st–11th (edn) Einhorn Verlag, Schwäbisch Gmünd

  • Allen MF (1987) Reestablishment of mycorrhizas on Mount St Helens: migration vectors. Trans Br Mycol Soc 88:413–417

    Article  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Amaranthus MP, Perry DA (1987) Effect of soil transfer on ectomycorrhiza formation and the survival and growth of conifer seedlings on old, non-reforested clear-cuts. Can J For Res 17:944–950

    Article  Google Scholar 

  • Applied Biosystems (2002) BigDye® terminator v1.1 cycle sequencing kit protocol. Applied Biosystems, Foster City

    Google Scholar 

  • Attiwill PM (1994) The disturbance of forest ecosystems—the ecological basis for conservative management. For Ecol Manage 63:247–300

    Article  Google Scholar 

  • Baar J, Horton TR, Kretzer AM, Bruns TD (1999) Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytol 143:409–418

    Article  Google Scholar 

  • Bendel M, Tinner W, Ammann B (2006) Forest dynamics in the Pfyn forest in recent centuries (Valais, Switzerland, Central Alps): interaction of pine (Pinus sylvestris) and oak (Quercus sp.) under changing land use and fire frequency. Holocene 16:81–89. doi:10.1191/0959683606hl906rpd

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95. doi:10.1007/s10584-006-9226-z

    Article  Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20:387–394. doi:10.1016/j.tree.2005.04.025

    Article  PubMed  Google Scholar 

  • Bovio G, Camia A, Guglielmet E, Cesti G (2005) Piano regionale per la programmazione delle attività di previsione, prevenzione e lotta attiva contro gli incendi boschivi. Regione Autonoma Valle d’Aostam, Assessorato Agricoltura e Risorse Naturali e Corpo Forestale, Aosta

    Google Scholar 

  • Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the earth system. Science 324:481–484. doi:10.1126/science.1163886

    Article  PubMed  CAS  Google Scholar 

  • Bradstock RA (2008) Effects of large fires on biodiversity in south-eastern Australia: disaster or template for diversity? Int J Wildland Fire 17:809–822. doi:10.1071/WF07153

    Article  Google Scholar 

  • Braun-Blanquet J (1961) Die inneralpine Trockenvegetation. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Brownlee C, Duddridge JA, Malibari A, Read DJ (1983) The structure and function of mycelial systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71:433–443

    Article  Google Scholar 

  • Bruelheide H, Luginbühl U (2009) Peeking at ecosystem stability: making use of a natural disturbance experiment to analyze resistance and resilience. Ecology 90:1314–1325. doi:10.1890/07-2148.1

    Article  PubMed  Google Scholar 

  • Buscardo E, Rodríguez-Echeverría S, Martín MP, De Angelis P, Pereira JS, Freitas H (2010) Impact of wildfire return interval on the ectomycorrhizal resistant propagules communities of a Mediterranean open forest. Fungal Biol 114:628–636. doi:10.1016/j.funbio.2010.05.004

    Article  PubMed  Google Scholar 

  • Cairney JWG, Bastias BA (2007) Influences of fire on forest soil fungal communities. Can J For Res 37:207–215. doi:10.1139/X06-190

    Article  Google Scholar 

  • Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10. doi:10.1007/s00442-004-1788-8

    Article  PubMed  Google Scholar 

  • Dahlberg A, Schimmel J, Taylor AFS, Johannesson H (2001) Post-fire legacy of ectomycorrhizal fungal communities in the Swedish boreal forest in relation to fire severity and logging intensity. Biol Conserv 100:151–161

    Article  Google Scholar 

  • DeBano LF, Neary DG, Ffolliott PF (1998) Fire’s effects on ecosystems. Wiley & Sons, New York

    Google Scholar 

  • Delarze R, Werner P (1985) Evolution après incendie d’une pelouse steppique et d’une pinède dans une vallée intra-alpine (Valais central). Phytocoenologia 13:305–321

    Google Scholar 

  • Delarze R, Caldelari D, Hainard P (1992) Effects of fire on forest dynamics in Southern Switzerland. J Veg Sci 3:55–60

    Article  Google Scholar 

  • di Pietro M, Churin JL, Garbaye J (2007) Differential ability of ectomycorrhizas to survive drying. Mycorrhiza 17:547–550. doi:10.1007/s00572-007-0113-x

    Article  PubMed  Google Scholar 

  • Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255. doi:10.1111/j.1365-2745.2005.00977.x

    Article  Google Scholar 

  • Dickie IA, Dentinger BTM, Avis PG, McLaughlin DJ, Reich PB (2009) Ectomycorrhizal fungal communities of oak savanna are distinct from forest communities. Mycologia 101:473–483. doi:10.3852/08-178

    Article  PubMed  CAS  Google Scholar 

  • Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287:834–836

    Article  Google Scholar 

  • Esposito A, Mazzoleni S, Strumia S (1999) Post-fire bryophyte dynamics in Mediterranean vegetation. J Veg Sci 10:261–268

    Article  Google Scholar 

  • Garbaye J (2000) The role of ectomycorrhizal symbiosis in the resistance of forests to water stress. Outlook Agr 29:63–69

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Gossow H, Hafellner R, Arndt N (2007) More forest fires in the Austrian Alps—a real coming danger? In: Borsdorf A, Sötter J, Veuillet E (eds) Managing alpine future, vol 2. Verlag der Österreichischen Wissenschaften, Innsbruck, pp 356–362

    Google Scholar 

  • Grogan P, Baar J, Bruns TD (2000) Below-ground ectomycorrhizal community structure in a recently burned bishop pine forest. J Ecol 88:1051–1062

    Article  Google Scholar 

  • Halpern CB (1988) Early successional pathways and the resistance and resilience of forest communities. Ecology 69:1703–1715

    Article  Google Scholar 

  • Horton TR, Bruns TD, Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot 77:93–102

    Google Scholar 

  • Ingold CT (1971) Fungal spores: their liberation and dispersal. Clarendon Press, Oxford

    Google Scholar 

  • Izzo A, Canright M, Bruns TD (2006) The effects of heat treatments on ectomycorrhizal resistant propagules and their ability to colonize bioassay seedlings. Mycol Res 110:196–202. doi:10.1016/j.mycres.2005.08.010

    Article  PubMed  Google Scholar 

  • Johnson CN (1996) Interactions between mammals and ectomycorrhizal fungi. Trends Ecol Evol 11:503–507

    Article  PubMed  CAS  Google Scholar 

  • Jonsson L, Dahlberg A, Nilsson MC, Zackrisson O, Kårén O (1999) Ectomycorrhizal fungal communities in late-successional Swedish boreal forests, and their composition following wildfire. Mol Ecol 8:205–215

    Article  Google Scholar 

  • Jonsson LM, Nilsson MC, Wardle DA, Zackrisson O (2001) Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93:353–364

    Article  Google Scholar 

  • Kazanis D, Arianoutsou M (2004) Long-term post-fire vegetation dynamics in Pinus halepensis forests of Central Greece: a functional group approach. Plant Ecol 171:101–121

    Article  Google Scholar 

  • Keeley SC, Keeley JE, Hutchinson SM, Johnson AW (1981) Postfire succession of the herbaceous flora in Southern California chaparral. Ecology 62:1608–1621

    Article  Google Scholar 

  • Keller W, Wohlgemuth T, Kuhn N, Schütz M, Wildi O (1998) Waldgesellschaften der Schweiz auf floristischer Grundlage. Statistisch überarbeitete Fassung der “Waldgesellschaften und Waldstandorte der Schweiz” von Heinz Ellenberg und Frank Klötzli (1972). Mitt Eidgenöss Forsch Wald Schnee Landsch 73:91–357

    Google Scholar 

  • Kipfer T, Egli S, Ghazoul J, Moser B, Wohlgemuth T (2010) Susceptibility of ectomycorrhizal fungi to soil heating. Fungal Biol 114:467–472. doi:10.1016/j.funbio.2010.03.008

    Article  PubMed  Google Scholar 

  • Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382

    Article  Google Scholar 

  • Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vrålstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068. doi:10.1111/j.1469-8137.2005.01376.x

    Article  PubMed  Google Scholar 

  • Krawchuk MA, Moritz MA, Parisien MA, Van Dorn J, Hayhoe K (2009) Global pyrogeography the current and future distribution of wildfire. PLoS One 4(4):e5102. doi:10.1371/journal.pone.0005102

    Article  PubMed  Google Scholar 

  • Lamhamedi MS, Bernier PY, Fortin JA (1992) Hydraulic conductance and soil-water potential at the soil root interface of Pinus pinaster seedlings inoculated with different dikaryons of Pisolithus sp. Tree Physiol 10:231–244

    PubMed  Google Scholar 

  • Lilleskov EA, Bruns TD (2005) Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97:762–769

    Article  PubMed  Google Scholar 

  • Mataix-Solera J, Guerrero C, García-Orenes F, Bárcenas GM, Torres P (2009) Forest fire effects on soil microbiology. In: Cerdà A, Robichaud PR (eds) Fire effects on soils and restoration strategies, vol 5. Science Publishers, Enfield, pp 133–175

    Chapter  Google Scholar 

  • Maumary L, Vallotton L, Delarze R (1995) Evolution après incendie d’une pinède et d’une steppe dans une vallée intra-alpine (Valais central). Phytocoenologia 25:305–316

    Google Scholar 

  • Mikola P (1970) Mycorrhizal inoculation in afforestation. In: Romberger J, Mikola P (eds) International review of forestry research, vol 3. Academic Press, New York, pp 123–196

    Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning, an integrative plant–fungal process. Chapman & Hall, New York, pp 357–418

    Google Scholar 

  • Moretti M, Duelli P, Obrist MK (2006) Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 149:312–327. doi:10.1007/s00442-006-0450-z

    Article  PubMed  Google Scholar 

  • Moser B, Temperli C, Schneiter G, Wohlgemuth T (2010) Potential shift in tree species composition after interaction of fire and drought in the Central Alps. Eur J For Res 129:625–633. doi:10.1007/s10342-010-0363-6

    Google Scholar 

  • Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85:1700–1707

    Article  Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manage 122:51–71

    Article  Google Scholar 

  • Nuñez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359. doi:10.1890/08-2139.1

    Article  PubMed  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) vegan: community ecology package v. 1.17–9. http://CRAN.R-project.org/package=vegan

  • Ozenda P (1988) Die Vegetation der Alpen im europäischen Gebirgsraum. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59:593–601. doi:10.1525/bio.2009.59.7.10

    Article  Google Scholar 

  • Peay KG, Garbelotto M, Bruns TD (2009) Spore heat resistance plays an important role in disturbance-mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings. J Ecol 97:537–547. doi:10.1111/j.1365-2745.2009.01489.x

    Article  Google Scholar 

  • Pigott CD (1982) Survival of mycorrhiza formed by Cenococcum geophilum Fr. in dry soils. New Phytol 92:513–517

    Article  Google Scholar 

  • Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326

    Article  Google Scholar 

  • Pyare S, Longland WS (2001) Patterns of ectomycorrhizal-fungi consumption by small mammals in remnant old-growth forests of the Sierra Nevada. J Mammal 82:681–689

    Article  Google Scholar 

  • Qiagen (2006) DNeasy 96 Plant Kit Handbook. Qiagen, Crawley

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Read DJ (1998) The mycorrhizal status of Pinus. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 324–340

    Google Scholar 

  • Rincón A, Pueyo JJ (2010) Effect of fire severity and site slope on diversity and structure of the ectomycorrhizal fungal community associated with post-fire regenerated Pinus pinaster Ait. seedlings. For Ecol Manage 260:361–369. doi:10.1016/j.foreco.2010.04.028

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  PubMed  Google Scholar 

  • Smith JE, McKay D, Niwa CG, Thies WG, Brenner G, Spatafora JW (2004) Short-term effects of seasonal prescribed burning on the ectomycorrhizal fungal community and fine root biomass in Ponderosa pine stands in the Blue Mountains of Oregon. Can J For Res 34:2477–2491

    Article  CAS  Google Scholar 

  • Smith JE, McKay D, Brenner G, McIver J, Spatafora JW (2005) Early impacts of forest restoration treatments on the ectomycorrhizal fungal community and fine root biomass in a mixed conifer forest. J Appl Ecol 42:526–535. doi:10.1111/j.1365-2664.2005.01047.x

    Article  Google Scholar 

  • Stendell ER, Horton TR, Bruns TD (1999) Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada Ponderosa pine forest. Mycol Res 103:1353–1359

    Article  Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850

    Article  PubMed  CAS  Google Scholar 

  • Trappe JM, Luoma DL (1992) The ties that bind: fungi in ecosystems. In: Carroll GC, Wicklow DT (eds) The fungal community, 2nd edn. Marcel Dekker, New York, pp 17–27

    Google Scholar 

  • Turner MG, Romme WH (1994) Landscape dynamics in crown fire ecosystems. Landsc Ecol 9:59–77

    Article  Google Scholar 

  • Turner MG, Romme WH, Tinker DB (2003) Surprises and lessons from the 1988 Yellowstone fires. Front Ecol Environ 1:351–358

    Article  Google Scholar 

  • Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447. doi:10.1111/j.1469-8137.2007.02173.x

    Article  PubMed  Google Scholar 

  • Vázquez FJ, Acea MJ, Carballas T (1993) Soil microbial populations after wildfire. FEMS Microbiol Ecol 13:93–103

    Article  Google Scholar 

  • Visser S (1995) Ectomycorrhizal fungal succession in Jack pine stands following wildfire. New Phytol 129:389–401

    Article  Google Scholar 

  • Whelan RJ (1995) The Ecology of Fire, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols—a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Wohlgemuth T, Hester C, Joss AR, Wasem U, Moser B (2010) Recruitment dynamics following the stand replacing fire near Leuk (VS). Schweiz Z Forstwes 161:450–459

    Article  Google Scholar 

  • Yamauchi A, Nishida T, Ohgushi T (2009) Stochastic tunneling in the colonization of mutualistic organisms: primary succession by mycorrhizal plants. J Theor Biol 261:74–82. doi:10.1016/j.jtbi.2009.07.021

    Article  PubMed  Google Scholar 

  • Zumbrunnen T, Bugmann H, Conedera M, Bürgi M (2009) Linking forest fire regimes and climate—a historical analysis in a dry inner alpine valley. Ecosystems 12:73–86. doi:10.1007/s10021-008-9207-3

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their constructive comments that helped to improve the manuscript. We are grateful to Giancarlo Cesti, Nucleo Antincendi Boschivi Aosta, and Marco Conedera and Thomas Zumbrunnen, WSL, who gave us access to their forest fire databases and helped with selection of sampling sites. We thank Ueli Wasem for assistance with field work and Rosmarie Eppenberger for support with molecular analyses. DNA sequencing was supported by the Genetic Diversity Centre of ETH Zürich (GDC) and financial support was provided by Swiss National Foundation Grant No. 31003A_118002. The work described in this manuscript complies with the current laws of Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Moser.

Additional information

Communicated by Catherine Gehring.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2093 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kipfer, T., Moser, B., Egli, S. et al. Ectomycorrhiza succession patterns in Pinus sylvestris forests after stand-replacing fire in the Central Alps. Oecologia 167, 219–228 (2011). https://doi.org/10.1007/s00442-011-1981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-1981-5

Keywords

Navigation