Skip to main content
Log in

Contrasting growth responses of dominant peatland plants to warming and vegetation composition

  • Highlighted Student Research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

There is growing recognition that changes in vegetation composition can strongly influence peatland carbon cycling, with potential feedbacks to future climate. Nevertheless, despite accelerated climate and vegetation change in this ecosystem, the growth responses of peatland plant species to combined warming and vegetation change are unknown. Here, we used a field warming and vegetation removal experiment to test the hypothesis that dominant species from the three plant functional types present (dwarf-shrubs: Calluna vulgaris; graminoids: Eriophorum vaginatum; bryophytes: Sphagnum capillifolium) contrast in their growth responses to warming and the presence or absence of other plant functional types. Warming was accomplished using open top chambers, which raised air temperature by approximately 0.35 °C, and we measured air and soil microclimate as potential mechanisms through which both experimental factors could influence growth. We found that only Calluna growth increased with experimental warming (by 20 %), whereas the presence of dwarf-shrubs and bryophytes increased growth of Sphagnum (46 %) and Eriophorum (20 %), respectively. Sphagnum growth was also negatively related to soil temperature, which was lower when dwarf-shrubs were present. Dwarf-shrubs may therefore promote Sphagnum growth by cooling the peat surface. Conversely, the effect of bryophyte presence on Eriophorum growth was not related to any change in microclimate, suggesting other factors play a role. In conclusion, our findings reveal contrasting abiotic and biotic controls over dominant peatland plant growth, suggesting that community composition and carbon cycling could be modified by simultaneous climate and vegetation change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts R, Cornelissen JHC, Dorrepaal E (2006) Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecol 182:65–77. doi:10.1007/s11258-005-9031-1

    Google Scholar 

  • Bardgett RD, Manning P, Morriën E, De Vries FT (2013) Hierarchical responses of plant–soil interactions to climate change: consequences for the global carbon cycle. J Ecol 101:334–343. doi:10.1111/1365-2745.12043

    Article  Google Scholar 

  • Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699. doi:10.1016/j.tree.2014.10.006

    Article  PubMed  Google Scholar 

  • Billett MF, Charman DJ, Clark JM et al (2010) Carbon balance of UK peatlands: current state of knowledge and future research challenges. Clim Res 45:13–29. doi:10.3354/cr00903

    Article  Google Scholar 

  • Blok D, Heijmans MMPD, Schaepman-Strub G et al (2011a) The cooling capacity of mosses: controls on water and energy fluxes in a siberian tundra site. Ecosystems 14:1055–1065. doi:10.1007/s10021-011-9463-5

    Article  Google Scholar 

  • Blok D, Schaepman-Strub G, Bartholomeus H et al (2011b) The response of arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature. Environ Res Lett 6:035502. doi:10.1088/1748-9326/6/3/035502

    Article  Google Scholar 

  • Bokhorst S, Huiskes A, Aerts R et al (2013) Variable temperature effects of open top chambers at polar and alpine sites explained by irradiance and snow depth. Glob Change Biol 19:64–74. doi:10.1111/gcb.12028

    Article  Google Scholar 

  • Bu Z-J, Rydin H, Chen X (2011) Direct and interaction-mediated effects of environmental changes on peatland bryophytes. Oecologia 166:555–563. doi:10.1007/s00442-010-1880-1

    Article  PubMed  Google Scholar 

  • Chapin FS III (1983) Direct and indirect effects of temperature on arctic plants. Polar Biol 2:47–52

    Article  Google Scholar 

  • Clymo RS (1970) The growth of Sphagnum: methods of measurement. J Ecol 58:13–49

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071. doi:10.1111/j.1461-0248.2008.01219.x

    Article  PubMed  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. doi:10.1038/Nature04514

    Article  CAS  PubMed  Google Scholar 

  • Dawes MA, Hagedorn F, Zumbrunn T et al (2011) Growth and community responses of alpine dwarf shrubs to in situ CO2 enrichment and soil warming. New Phytol 191:806–818. doi:10.1111/j.1469-8137.2011.03722.x

    Article  PubMed  Google Scholar 

  • De Deyn GB, Cornelissen JHC, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531. doi:10.1111/j.1461-0248.2008.01164.x

    Article  PubMed  Google Scholar 

  • DeLuca T, Zackrisson O, Nilsson M, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920. doi:10.1038/nature01136.1

    Article  CAS  PubMed  Google Scholar 

  • Dise NB (2009) Peatland response to global change. Science 326:810–811. doi:10.1126/science.1174268

    Article  CAS  PubMed  Google Scholar 

  • Dorrepaal E (2007) Are plant growth-form-based classifications useful in predicting northern ecosystem carbon cycling feedbacks to climate change? J Ecol 95:1167–1180. doi:10.1111/j.1365-2745.2007.01294.x

    Article  Google Scholar 

  • Dorrepaal E, Toet S, van Logtestijn RSP et al (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–620. doi:10.1038/Nature08216

    Article  CAS  Google Scholar 

  • Elmendorf SC, Henry GHR, Hollister RD et al (2012) Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol Lett 15:164–175. doi:10.1111/j.1461-0248.2011.01716.x

    Article  PubMed  Google Scholar 

  • Friedlingstein P, Cox P, Betts R et al (2006) Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19:3337–3353. doi:10.1175/JCLI3800.1

    Article  Google Scholar 

  • Gallego-Sala AV, Prentice CI (2012) Blanket peat biome endangered by climate change. Nat Clim Change 3:152–155. doi:10.1038/nclimate1672

    Article  Google Scholar 

  • Genney DR, Alexander IJ, Hartley SE (2000) Exclusion of grass roots from soil organic layers by Calluna: the role of ericoid mycorrhizas. J Exp Bot 51:1117–1125

    Article  CAS  PubMed  Google Scholar 

  • Gimingham CH (1960) Calluna vulgaris (Hull). J Ecol 48:455–483

    Article  Google Scholar 

  • Grace J, Marks TC (1978) Physiological aspects of bog production at Moor House. In: Heal OW, Perkins DF (eds) Production ecology of British Moors and montane grassland. Springer, New York, pp 38–51

    Chapter  Google Scholar 

  • Gray A, Levy PE, Cooper MDA et al (2013) Methane indicator values for peatlands: a comparison of species and functional groups. Glob Change Biol 19:1141–1150. doi:10.1111/gcb.12120

    Article  Google Scholar 

  • Groffman PM, Driscoll CT, Fahey TJ et al (2001) Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56:135–150

    Article  CAS  Google Scholar 

  • Gunnarsson U (2005) Global patterns of Sphagnum productivity. J Bryol 27:269–279. doi:10.1179/174328205X70029

    Article  Google Scholar 

  • Heal OW, Smith RI (1978) The Moor House Program: introduction and site description. In: Heal OW, Perkins DF (eds) Production ecology of British Moors and montane grassland. Springer, New York, pp 304–331

    Chapter  Google Scholar 

  • Hooper D, Adair EC, Cardinale BJ et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108. doi:10.1038/nature11118

    CAS  PubMed  Google Scholar 

  • Hudson JMG, Henry GHR, Cornwell WK (2011) Taller and larger: shifts in arctic tundra leaf traits after 16 years of experimental warming. Glob Change Biol 17:1013–1021. doi:10.1111/j.1365-2486.2010.02294.x

    Article  Google Scholar 

  • IPCC (2007) The physical science basis: contribution of working group I to the fourth assessment of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jassey VEJ, Chiapusio G, Binet P et al (2013) Above- and belowground linkages in Sphagnum peatland: climate warming affects plant–microbial interactions. Glob Change Biol 19:811–823. doi:10.1111/gcb.12075

    Article  Google Scholar 

  • Keuper F, Dorrepaal E, van Bodegom PM et al (2011) A race for space? How Sphagnum fuscum stabilizes vegetation composition during long-term climate manipulations. Glob Change Biol 17:2162–2171. doi:10.1111/j.1365-2486.2010.02377.x

    Article  Google Scholar 

  • Kool A, Heijmans M (2009) Dwarf shrubs are stronger competitors than graminoid species at high nutrient supply in peat bogs. Plant Ecol 204:125–134. doi:10.1007/sl1258-009-9574-7

    Article  Google Scholar 

  • Loisel J, Gallego-Sala AV, Yu Z (2012) Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length. Biogeosciences 9:2737–2746. doi:10.5194/bg-9-2737-2012

    Article  CAS  Google Scholar 

  • Marion GM, Henry GHR, Freckman DW et al (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Change Biol 3:20–32

    Article  Google Scholar 

  • Medina-Roldán E, Bardgett RD (2012) Inter-specific competition, but not different soil microbial communities, affects N chemical forms uptake by competing graminoids of upland grasslands. PLoS ONE 7:e51193. doi:10.1371/journal.pone.0051193

    Article  PubMed Central  PubMed  Google Scholar 

  • Metcalfe DB, Fisher RA, Wardle DA (2011) Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change. Biogeosciences 8:2047–2061. doi:10.5194/bg-8-2047-2011

    Article  Google Scholar 

  • Moore PD (2002) The future of cool temperate bogs. Environ Conserv 29:3–20. doi:10.1017/S0376892902000024

    Article  CAS  Google Scholar 

  • Murray KJ, Tenhunen JD, Kummerow J (1989) Limitations on Sphagnum growth and net primary production in the foothills of the Philip Smith Mountains, Alaska. Oecologia 80:256–262

    Article  Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M et al (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6:045509. doi:10.1088/1748-9326/6/4/045509

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S et al (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-119. http://CRAN.R-project.org/package=nlme

  • Prentice IC, Farquhar GD, Fasham MJR et al (2001) The carbon cycle and atmospheric carbon dioxide. Chapter 3 of the Third Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, UK, pp 183–238

  • Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263. doi:10.1139/b04-123

    Article  CAS  Google Scholar 

  • Rodwell JS (1991) British plant communities. Mires and heaths, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Rustad LE, Campbell JL, Marion GM et al (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562. doi:10.1007/s004420000544

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Trinder CJ, Artz RRE, Johnson D (2008) Contribution of plant photosynthate to soil respiration and dissolved organic carbon in a naturally recolonising cutover peatland. Soil Biol Biochem 40:1622–1628. doi:10.1016/j.soilbio.2008.01.016

    Article  CAS  Google Scholar 

  • Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409. doi:10.1639/05

    Article  Google Scholar 

  • Walker M, Wahren C, Hollister RD et al (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1346. doi:10.1073/pnas.0503198103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ward SE, Bardgett RD, McNamara NP, Ostle NJ (2009) Plant functional group identity influences short-term peatland ecosystem carbon flux: evidence from a plant removal experiment. Funct Ecol 23:454–462. doi:10.1111/j.1365-2435.2008.01521.x

    Article  Google Scholar 

  • Ward SE, Ostle NJ, Oakley S et al (2013) Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecol Lett 16:1285–1293. doi:10.1111/ele.12167

    Article  PubMed  Google Scholar 

  • Ward SE, Orwin K, Ostle NJ et al (2014) Vegetation exerts a greater control on litter decomposition than climate warming in peatlands. Ecology. doi:10.1890/14-0292.1

    PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Callaway RM, van der Putten WH et al (2011) Terrestrial ecosystem responses to species gains and losses. Science 332:1273–1277. doi:10.1126/science.1197479

    Article  CAS  PubMed  Google Scholar 

  • Wein RW (1973) Eriophorum vaginatum L. J Ecol 61:601–615

    Article  Google Scholar 

  • Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21:1–20

    Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

  • Wickham H (2011) The split–apply–combine strategy for data analysis. J Stat Softw 40:1–29

    Google Scholar 

  • Zuur A, Ieno E, Walker N et al (2010) Mixed effects models and extensions in ecology with R. Springer, New York

    Google Scholar 

Download references

Acknowledgments

This research was supported by a Natural Environment Research Council (NERC) CASE Studentship between The University of Manchester and Centre for Ecology and Hydrology (CEH) Lancaster, and made use of an experiment set up with funding from a NERC EHFI Grant (NE/E011594/1) awarded to R.D.B. and N.J.O. We thank colleagues from Lancaster University and CEH Lancaster, and in particular Caley Brown and Simon Oakley, for help in the field. We also thank Natural England and the Environmental Change Network, CEH Lancaster, for access to the site and meteorological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom N. Walker.

Additional information

Communicated by Allan T. G. Green.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, T.N., Ward, S.E., Ostle, N.J. et al. Contrasting growth responses of dominant peatland plants to warming and vegetation composition. Oecologia 178, 141–151 (2015). https://doi.org/10.1007/s00442-015-3254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3254-1

Keywords

Navigation