Skip to main content
Log in

Regulation of sulfate uptake and xylem loading of poplar roots (Populus tremula x P. alba)

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Sulfate transport processes and its regulation were studied in roots of poplar trees (Populus tremula x P. alba). From the exponential increase in sulfate uptake with temperature an activation energy (Ea) of 9.0±0.8 kJ mol−1 was calculated. In the concentration range 0.005–10 mM sulfate uptake showed biphasic Michaelis-Menten kinetics with a Km of 3.2±3.4 μM and a Vmax of 49±11 nmol SO42− g−1 FW h−1 for the high-affinity uptake system (phase 1) and a Km of 1.33±0.41 mM and a Vmax of 255±25 nmol SO42− g−1 FW h−1 for the low-affinity system (phase 2). Xylem loading decreased linearly with temperature and remained unchanged within the sulfate concentration range studied. Regulation of sulfate uptake and xylem loading by O-acetyl serine (OAS), Cys, reduced glutathione (GSH), Met and S-methylmethionine (SMM) were tested by perfusion into the xylem sap with the pressure probe and by addition to the incubation medium. When added directly to the transport medium, Cys and GSH repressed, and OAS stimulated sulfate uptake; xylem loading was stimulated by Cys, repressed by GSH and only slightly affected by OAS. When perfused into the xylem, none of the compounds tested affected sulfate uptake of excised roots, but xylem loading was stimulated by SMM and OAS and repressed by Met. Apparently, the site of application strongly determined the effect of regulatory compounds of sulfate transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CHES::

2-(Cyclohexylamino)-ethanesulfonic acid

Ea::

Activation energy

mBBr::

Monobromobimane

MS::

Murashige and Skoog

OAS::

O-Acetyl-l-serine

OAS-TL::

O-Acetyl-l-serine thiol lyase

SAT::

Serine acetyl transferase

SMM::

S-Methyl-l-methionine

SMMI::

Iodide salt of SMM

References

  • Bassirirad H (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147:155–169

    Article  CAS  Google Scholar 

  • Benning C (1998) Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol. Annu Rev Plant Physiol Plant Mol Biol 49:53–75

    Article  CAS  PubMed  Google Scholar 

  • Biedlingmaier S, Schmidt A (1989) Sulfate uptake in normal and S-deprived Chlorella fusca. Z Naturforsch 44C:495–503

    Google Scholar 

  • Bisswanger H (ed) (1979) Theorie und Methoden der Enzymkinetik. Eine Einführung für Biochemiker, Biologen und Mediziner. Chemie, Weinheim

    Google Scholar 

  • Bolchi A, Petrucco S, Tenca PL, Foroni C, Ottonello S (1999) Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down-regulation by l-cysteine. Plant Mol Biol 39:527–537

    Article  CAS  PubMed  Google Scholar 

  • Borstlap AC (1983) The use of model-fitting in the interpretation of “dual” uptake isotherms. Plant Cell Environ 6:407–416

    Google Scholar 

  • Bourgis F, Roje S, Nuccio ML, Fisher DB, Tarczynski MC, Li C, Herschbach C, Rennenberg H, Pimenta MJ, Shen T-L, Gage DA, Hanson AD (1999) S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11:1485–1497

    Article  CAS  PubMed  Google Scholar 

  • Cherest H, Davidian J-C, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145:627–635

    CAS  PubMed  Google Scholar 

  • Clarkson DT, Smith FW, Vandenberg PJ (1983) Regulation of sulfate transport in a tropical legume, Macroptilium atropurpureum, cv. Sirato. J Exp Bot 34:1463–1483

    CAS  Google Scholar 

  • Clarkson DT, Diogo E, Amânchio S (1999) Uptake and assimilation of sulfate by sulfur deficient Zea mays cells: the role of O-acetyl-l-serine in the interaction between nitrogen and sulfur assimilatory pathways. Plant Physiol Biochem 37:283–290

    Article  CAS  Google Scholar 

  • Coughlan S (1977) Sulfate uptake in Fucus serratus. J Exp Bot 28:1207–1215

    CAS  Google Scholar 

  • Cuppoletti J, Segel IH (1974) Transinhibition kinetics of the sulfate transport system of Penicillium notatum. Analysis based on an iso uni uni velocity equation. J Membr Biol 17:239–252

    CAS  PubMed  Google Scholar 

  • Cuppoletti J, Segel IH (1975) Kinetics of sulfate transport by Penicillium notatum. Interactions of sulfate, protons, and calcium. Biochemistry 14:4712–4718

    CAS  PubMed  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T, Mult S, Suter M, Rennenberg H, Herschbach C (2000) Leaf age-dependent differences in sulfur assimilation and allocation in poplar (Populus tremula x P. alba) leaves. J Exp Bot 51:1077–1088

    Article  CAS  PubMed  Google Scholar 

  • Hatzfeld Y, Saito K (2000) Regulation of sulfate transporter genes in Arabidopsis thaliana. In: Brunold C, Rennenberg H, Kok LJ, Stulen I, Davidian J-C (eds) Sulfur nutrition and sulfur assimilation in higher plants. Molecular, biochemical and physiological aspects. Paul Haupt, Berne, Switzerland, pp 269–271

    Google Scholar 

  • Hawkesford MJ, Prosser IM (2000) The plant sulfate transporter family. In: Brunold C, Rennenberg H, Kok LJ, Stulen I, Davidian J-C (eds) Sulfur nutrition and sulfur assimilation in higher plants. Molecular, biochemical and physiological aspects. Paul Haupt, Berne, Switzerland, pp 263–264

    Google Scholar 

  • Hawkesford MJ, Davidian J-C, Grignon C (1993) Sulfate/proton cotransport in plasma membrane vesicles isolated from roots of Brassica napus L.: increased transport in membranes isolated from sulfur-starved plants. Planta 190:297–304

    Article  CAS  Google Scholar 

  • Hell R (2003) Metabolic regulation of cysteine synthesis and sulfur assimilation. In: Davidian J-C, Grill D, Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Rennenberg H (eds) Sulfur nutrition and sulfur assimilation in higher plants: regulation, interaction and signaling. Backhuys, Leiden, The Netherlands, pp 21–32

    Google Scholar 

  • Herschbach C (2003) Whole plant regulation of sulfur nutrition of deciduous trees—influence of the environment. Plant Biol 5:233–244

    Article  CAS  Google Scholar 

  • Herschbach C, Rennenberg H (1991) Influence of glutathione (GSH) on sulfate influx, xylem loading and exudation in excised tobacco roots. J Exp Bot 42:1021–1029

    CAS  Google Scholar 

  • Herschbach C, Rennenberg H (1995) Long-distance transport of 35S-sulfur in 3-year-old beech trees (Fagus sylvatica). Physiol Plant 95:379–386

    Article  CAS  Google Scholar 

  • Herschbach C, Rennenberg H (1996) Storage and remobilization of sulfur in beech trees (Fagus sylvatica). Physiol Plant 98:125–132

    Article  CAS  Google Scholar 

  • Herschbach C, Rennenberg H (1997) Sulfur nutrition of conifers and deciduous trees. In: Rennenberg H, Eschrich W, Ziegler H (eds) Trees—contributions to modern tree physiology. Backhuys, Leiden, The Netherlands, pp 293–311

    Google Scholar 

  • Herschbach C, Rennenberg H (2001) Significance of phloem-translocated organic sulfur compounds for the regulation of sulfur nutrition. Prog Bot 62:177–193

    CAS  Google Scholar 

  • Herschbach C, van der Zalm E, Schneider A, Jouanin L, De Kok L, Rennenberg H (2000) Regulation of sulfur nutrition in wildtype poplar trees overexpressing γ-glutamylcysteine synthetase as affected by atmospheric H2S. Plant Physiol 124:461–473

    Article  CAS  PubMed  Google Scholar 

  • Herschbach C, Pilch B, Tausz M, Rennenberg H, Grill D (2002) Sulphate uptake and xylem loading of young pea (Pisum sativum L.) seedlings. Plant Soil 242:227–233

    Article  CAS  Google Scholar 

  • Hirai MY, Fujiwara T, Awazuhara M, Kimura T, Noji M, Saito K (2003) Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-l-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J 33:651–663

    Article  CAS  PubMed  Google Scholar 

  • Holmern K, Vange MS, Nissen P (1974) Multiphasic uptake of sulfate by barley roots. II. Effects of washing, divalent cations, inhibitors, and temperature. Physiol Plant 31:302–310

    CAS  Google Scholar 

  • Jones SL, Smith IK (1981) Sulfate transport in cultured tobacco cells. Plant Physiol 67:445–448

    CAS  Google Scholar 

  • Kocsis MG, Nolte KD, Rhodes D, Shen T-L, Gage DA, Hanson AD (1998) Dimethylsulfoniopropionate biosynthesis in Spartina alterniflora. Evidence that S-methylmethionine and dimethylsulfoniopropylamine are intermediates. Plant Physiol 117:273–281

    Article  CAS  PubMed  Google Scholar 

  • Kredich NM (1993) Gene regulation of sulfur assimilation. In: Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur nutrition and assimilation in higher plants. SPB Academic, The Hague, The Netherlands, pp 37–47

    Google Scholar 

  • Kreuzwieser J (1997) Sulfat- und Nitrattransport bei mykorrhizierten und nicht-mykorrhizierten Buchen (Fagus sylvatica L). Ph.D. Thesis, University Freiburg, Germany

  • Kreuzwieser J, Rennenberg H (1998) Sulfate uptake and xylem loading of mycorrhizal beech roots. New Phytol 140:319–329

    Article  CAS  Google Scholar 

  • Kreuzwieser J, Herschbach C, Rennenberg H (1996) Sulfate uptake and xylem loading of non-mycorrhizal excised roots of young Fagus sylvatica trees. Plant Physiol Biochem 34:409–416

    CAS  Google Scholar 

  • Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO42− uptake in intact canola. The role of phloem-translocated glutathione. Plant Physiol 111:147–157

    CAS  PubMed  Google Scholar 

  • Leustek T, Martin MN, Bick J-A, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  CAS  PubMed  Google Scholar 

  • Manabe T, Hasumi A, Sugiyama M, Yamazaki M, Saito K (2000) Alliinase (S-alk(en)yl-l-cysteine sulfoxide lyase) from Allium tuberosum (Chinese chive). In: Brunold C, Rennenberg H, Kok LJ, Stulen I, Davidian J-C (eds) Sulfur nutrition and sulfur assimilation in higher plants. Molecular, biochemical and physiological aspects. Paul Haupt, Berne, Switzerland, pp 419–420

    Google Scholar 

  • Matsuda Y, Colman B (1995) Characterization of sulfate transport in the green alga Chlorella ellipsoidea. Plant Cell Physiol 36:1291–1296

    CAS  Google Scholar 

  • Mead R, Curnow RN, Hasted AM (1993) Statistical methods in agriculture and experimental biology. Chapman and Hall, London

  • Mendel RR, Schwarz G (1999) Molybdoenzymes and molybdenum cofactor in plants. Crit Rev Plant Sci 18:33–69

    Article  CAS  Google Scholar 

  • Menon VKN, Varma AK (1982) Sulfate uptake in the cyanobacterium Spirulina platensis. FEMS Microbiol Lett 13:141–146

    Article  CAS  Google Scholar 

  • Mimura T, Reid RJ, Smith FA (1998) Control of phosphate transport across the plasma membrane of Chara corollina. J Exp Bot 49:13–19

    Article  CAS  Google Scholar 

  • Nissen P (1971) Uptake of sulfate by roots and leaf slices of barley: mediated by single, multiphasic mechanisms. Physiol Plant 24:315–324

    CAS  Google Scholar 

  • Nissen P (1991) Multiphasic uptake mechanisms in plants. Int Rev Cytol 120:89–134

    Google Scholar 

  • Rennenberg H, Polle A, Martini N, Thoene B (1988) Interaction of sulfate and glutathione transport in cultured tobacco cells. Planta 176:68–74

    CAS  Google Scholar 

  • Ritchie RJ (1996) Sulfate transport in the cyanobacterium Synechococcus R-2 (Anacystis nidulans, Sleopoliensis) PCC 7942. Plant Cell Environ 19:1307–1316

    CAS  Google Scholar 

  • Schneider A, Kreuzwieser J, Schupp R, Sauter JJ, Rennenberg H (1994) Thiol and amino acid composition of xylem sap of poplar trees (Populus × canadensis “robusta”). Can J Bot 72:347– 351

    CAS  Google Scholar 

  • Schupp H, Rennenberg H (1988) Diurnal changes in the glutathione concentration of spruce needles (Picea abies L.). Plant Sci 57:113–117

    Article  CAS  Google Scholar 

  • Seegmüller S, Rennenberg H (2002) Transport of organic sulfur and nitrogen in the roots of young mycorrhizal pedunculate oak trees (Quercus robur L.). Plant Soil 242:291–297

    Article  Google Scholar 

  • Seegmüller S, Schulte M, Herschbach C, Rennenberg H (1996) Interactive effects of mycorrhization and elevated CO2 on sulfur nutrition of young pedunculate oak (Quercus robur L.) trees. Plant Cell Environ 19:418–426

    Google Scholar 

  • Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT (1995) Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci USA 92:9373–9377

    CAS  PubMed  Google Scholar 

  • Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, Vandenberg PJ, Belcher AR, Warrilow AGS (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulfate transporter. Plant J 12:875–884

    Article  CAS  PubMed  Google Scholar 

  • Steinkamp R (1984) Der Abbau von Glutathion in Suspensionskulturen von Nicotiana tabacum var. “Samsun.”. Ph.D. Thesis, University Köln, Germany

  • Steudle E (1993) Pressure probe techniques: basic principles and application to studies of water and solute relations at the cell, tissue and organ level. In: Smith JAC, Griffiths H (eds) Water deficits: plant responses from cell to community. Bios Scientific, Oxford, UK, pp 5–36

    Google Scholar 

  • Strohm M, Jouanin L, Kunert KJ, Pruvost C, Polle A, Foyer CH, Rennenberg H (1995) Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione synthetase. Plant J 7:141–145

    Article  CAS  Google Scholar 

  • Sunarpi, Anderson JW (1996) Effect of sulfur nutrition on the redistribution of sulfur in vegetative soybean plants. Plant Physiol 112:623–631

    PubMed  Google Scholar 

  • Tabe L, Droux M (2000) Sulfur metabolism in developing seeds of transgenic narrow leaf lupin expressing a sulfur-rich protein. In: Brunold C, Rennenberg H, Kok LJ, Stulen I, Davidian J-C (eds) Sulfur nutrition and sulfur assimilation in higher plants. Molecular, biochemical and physiological aspects. Paul Haupt, Berne, Switzerland, pp 317–318

    Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulfate transporters involved in uptake and translocation of sulfate in Arabidopsis thaliana. Plant J 23:171–182

    Article  CAS  PubMed  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krähenbühl U, Op den Camp R, Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5’-phosphosulphate reductase is more susceptible than ATP sulphurylase to negative control by thiols. Plant J 31:729–740

    Article  CAS  PubMed  Google Scholar 

  • Yildiz FH, Davies JP, Grossmann AR (1994) Characterization of sulfur transport in Chlamydomonas reinhardtii during sulfur-limited and sulfur-sufficient growth. Plant Physiol 104:981–987

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. E. Steudle for introducing us to the pressure probe technique. R. Nitschke and M. Eiblmeier are gratefully acknowledged for expert technical assistance. Dr. J. Kreuzwieser is gratefully acknowledged for helpful discussions. We thank Dr. G. Leubner and Dr. S. Kopriva for critically reading the manuscript. This research was financially supported by the German National Science Foundation (DFG) under project number Re-515/6-1

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Rennenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Zalm, E., Schneider, A. & Rennenberg, H. Regulation of sulfate uptake and xylem loading of poplar roots (Populus tremula x P. alba). Trees 19, 204–212 (2005). https://doi.org/10.1007/s00468-004-0383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-004-0383-2

Keywords

Navigation