Skip to main content
Log in

Characterization of photosynthetic acclimation in Phoenix dactylifera by a modified Arrhenius equation originally developed for leaf respiration

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Instantaneous temperature responses of leaf respiration and photosynthesis can be described by the same equation, to help understand acclimation of primary metabolism to altered growth temperature and water supply.

Abstract

We used a three-parameter, modified Arrhenius equation, originally developed for leaf respiration, to characterize A/T curves of Date Palm and acclimation to elevated growth temperature and water deprivation:

$$A_{\text{T}} = A_{\text{ref}} \times e^{{\left[ {\frac{{E_{\text{o}} (\text{Ref}_{\text{A}} )}}{\Re } \times \left( {\frac{{T - T_{\text{ref}} }}{{T \times T_{\text{ref}} }}} \right) + \delta_{\text{A}} \times \left( {\frac{{T - T_{\text{ref}} }}{{T \times T_{\text{ref}} }}} \right)^{2} } \right]}}$$

where A ref is the net CO2-assimilation (A) at fixed reference temperature (T ref), E o(RefA) is the activation energy of A close to T ref, and δ A describes the change of E o with increasing incubation temperature (T). Similar to respiration parameters, E o(RefA) and δ A-values were strongly correlated. Symmetry of A/T curves, i.e., constancy of dE o/dT between 20–45 °C incubation temperatures, suggests close coordination of component processes underlying A. This symmetry remained at high growth temperature, despite large reductions in biochemical capacity for P i regeneration relative to carboxylation capacity (i.e., increased abundance of RubisCO activase). Acclimation to higher temperature caused pronounced reductions in physiological capacity of respiration (R Cap) (type II acclimation, determined via gas exchange measurements). Reductions in R Cap were not a result of limitations in substrate availability (i.e., pyruvate), but were related to lower abundances of mitochondrial enzymes in well-watered plants (i.e., pyruvate dehydrogenase and cytochrome oxidase). Water shortage led to sucrose accumulation, with modest reductions in mitochondrial enzyme pools. R Cap remained low when growth temperature was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amthor JF (2010) From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. New Phytol 188:939–959

    Article  CAS  PubMed  Google Scholar 

  • Armstrong AF, Logan DC, Tobin AK, O’Toole P, Atkin OK (2006) Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. Plant Cell Environ 29:940–949

    Article  PubMed  Google Scholar 

  • Atkin OK, Macherel D (2009) The crucial role of plant mitochondria in orchestrating drought tolerance. Ann Bot 103:581–597

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8(7):343–351

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Bruhn D, Hurry VM, Tjoelker MG (2005a) Evans Review No. 2. The hot and the cold: unraveling the variable response of plant respiration to temperature. Funct Plant Biol 32:87–105

    Article  Google Scholar 

  • Atkin OK, Bruhn D, Tjoelker MG (2005) Response of plant respiration to changes in temperature: mechanisms and consequences of variations in Q10 values and acclimation. In: Lambers H, Ribas-Carbo M (eds) Plant respiration, pp 95–135

  • Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bönisch G et al (2015) Global variability in leaf respiration in relation to climate, plant functional types and leaf trait. New Phytol. doi:10.1111/nph.13253

    Google Scholar 

  • Atkins PW, de Paula J (2006) Physikalische Chemie. Wiley-VCH, Weinheim

    Google Scholar 

  • Battaglia M, Beadle C, Loughhead S (1996) Photosynthesis temperature response of Eucalyptus globulus and Eucalyptus nitens. Tree Physiol 16:81–89

    Article  PubMed  Google Scholar 

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24:253–259

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Bagley JE, Serbin SP, Ruiz-Vera UM, Rosenthal DM, Vanloocke A (2013) Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant Cell Environ 36:1641–1657

    Article  CAS  PubMed  Google Scholar 

  • Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Bolstad PV, Reich P, Lee T (2003) Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra. Tree Physiol 23:969–976

    Article  Google Scholar 

  • Bruhn D, Egerton JJG, Loveys BR, Ball MC (2007) Evergreen leaf respiration acclimates to long-term nocturnal warming under field conditions. Global Change Biol 13:1216–1223

    Article  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Bunce JA (2000) Acclimation of photosynthesis to temperature in eight cold and warm climate herbaceous C3 species: temperature dependence of parameters of a biochemical photosynthesis model. Photosynth Res 53:59–67

    Article  Google Scholar 

  • Bunce JA (2007) Direct and acclimatory responses of dark respiration and translocation to temperature. Ann Bot 100:67–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, Hurry V (2007) Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol 176:375–389

    Article  CAS  PubMed  Google Scholar 

  • Cannell MGR, Thornley JHM (2000) Modeling plant respiration: some guiding principles. Ann Bot 85:45–54

    Article  CAS  Google Scholar 

  • Chi Y, Xu M, Shen R, Yang Q, Huang Q, Wan S (2013) Acclimation of foliar respiration and photosynthesis in response to experimental warming in a temperate steppe in Northern China. PLoS One 8:1–13

    Google Scholar 

  • Clarke A (2006) Temperature and the metabolic theory of ecology. Funct Ecol 20:405–412

    Article  Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805

    Article  CAS  PubMed  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97:13430–13435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewar RC, Medlyn BE, McMurtrie RE (1999) Acclimation of the respiration/photosynthesis ratio to temperature: insights from a model. Global Change Biol 5:615–622

    Article  Google Scholar 

  • Diaz-Espejo A (2013) New challenges in modelling photosynthesis: temperature dependencies of Rubisco kinetics. Plant Cell Environ 36:2104–2107

    Article  CAS  PubMed  Google Scholar 

  • Dillaway D, Kruger EL (2010) Thermal acclimation of photosynthesis: a comparison of boreal and temperate tree species along a latitudinal transect. Plant Cell Environ 33:888–899

    Article  CAS  PubMed  Google Scholar 

  • Dreyer E, Le Roux X, Montpied P, Daudet FA, Masson F (2001) Temperature response of leaf photosynthetic capacity in seedlings from seven temperature tree species. Tree Physiol 21:223–232

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Fatichi S, Leutzinger S, Körner C (2014) Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. New Phytol 201:1086–1095

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Bota J, Galmés J, Medrano H, Ribas-Carbó M (2006) Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol Plant 127:343–352

    Article  CAS  Google Scholar 

  • Gifford RM (2003) Plant respiration in productivity models: conceptualization, representation and issues for global terrestrial carbon-cycle research. Funct Plant Biol 30:171–186

    Article  Google Scholar 

  • Givan CV (1999) Evolving concepts in plant glycolysis: two centuries of progress. Biol Rev 74:277–309

    Article  Google Scholar 

  • Gunderson CA, O’Hara KH, Campion CM, Walker AW, Edwards NT (2010) Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Global Change Biol 16:2272–2286

    Article  Google Scholar 

  • Guy CL, Huber JLA, Huber SC (1992) Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol 99:1443–1448

    Article  Google Scholar 

  • Hikosaka K, Ishikawa K, Borjigidai A, Muller O, Onoda Y (2006) Temperature acclimation of photosynthesis: mechanisms involved in the change in temperature dependence of photosynthetic rate. J Exp Bot 57:291–302

    Article  CAS  PubMed  Google Scholar 

  • Hurry VM, Strand Å, Tobiæson M, Gardeström P, Öquist G (1995) Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol 109:697–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hüve K, Bichele I, Rasulov B, Niinemets Ü (2011) When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant Cell Environ 34:113–126

    Article  PubMed  CAS  Google Scholar 

  • Kattge J, Knorr W (2007) Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ 30:1176–1190

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum MUF, Farquhar GD (1984) Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb. ex Spreng. Aust J Plant Physiol 11:519–538

    Article  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21:1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Körner C (2013) Growth controls photosynthesis—mostly. Nova Acta Leopold 114:273–283

    Google Scholar 

  • Kreuzwieser J, Hauberg J, Howell KA, Carroll A, Rennenberg H, Millar AH, Whelan J (2009) Differential response of gray poplar leaves and roots underpins stress adaptation during hypoxia. Plant Physiol 149:461–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse J, Adams MA (2008a) Sensitivity of respiratory metabolism and efficiency to foliar nitrogen during growth and maintenance. Global Change Biol 14:1233–1251

    Article  Google Scholar 

  • Kruse J, Adams MA (2008b) Three parameters comprehensively describe the temperature response of respiratory oxygen reduction. Plant Cell Environ 31:954–967

    Article  CAS  PubMed  Google Scholar 

  • Kruse J, Adams MA (2008c) Integrating two physiological approaches helps relate plant respiration to growth of Pinus radiata. New Phytol 180:841–852

    Article  CAS  PubMed  Google Scholar 

  • Kruse J, Hopman P, Adams MA (2008) Temperature responses are a window to the physiology of dark respiration: differences between CO2 release and O2 reduction shed light on energy conservation. Plant Cell Environ 31:901–914

    Article  CAS  PubMed  Google Scholar 

  • Kruse J, Rennenberg H, Adams MA (2011) Steps towards a mechanistic understanding of respiratory temperature responses. New Phytol 189:659–677

    Article  CAS  PubMed  Google Scholar 

  • Kruse J, Turnbull T, Adams MA (2012) Disentangling respiratory acclimation and adaptation to growth temperature by Eucalyptus spp. New Phytol 195:149–163

    Article  CAS  PubMed  Google Scholar 

  • Kruse J, Simon J, Rennenberg H (2013) Soil respiration and soil organic matter decomposition in response to climate change. In: Mattyssek R, Clarke N, Cudlin P, Mikkelsen TN, Tuovinen J-P, Wieser G, Paoletti E (eds) Climate change, air pollution and global challenges, pp 131–149

  • Kruse J, Alfarraj S, Rennenberg H, Adams MA (2016). A novel mechanistic interpretation of instantaneous temperature responses of leaf net photosynthesis. Photosynth Res. doi:10.1007/s11120-016-0262-x

  • Kurimoto K, Day DA, Lambers H, Noguchi K (2004) Effect of respiratory homeostasis on plant growth in cultivars of wheat and rice. Plant Cell Environ 27:853–862

    Article  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (1998) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Larigauderie A, Körner C (1995) Acclimation of leaf dark respiration to temperature in alpine and lowland plant species. Ann Bot 76:245–252

    Article  Google Scholar 

  • Lee TD, Reich PB, Bolstad PV (2005) Acclimation of leaf respiration to temperature is rapid and related to specific leaf area, soluble sugars and leaf nitrogen across three temperate deciduous tree species. Funct Ecol 19:640–647

    Article  Google Scholar 

  • Leegood RC, Edwards GE (1996) Carbon metabolism and photorespiration: temperature dependence in relation to other environmental factors. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic, Dordrecht, pp 191–221

    Google Scholar 

  • Lin Y-S, Medlyn BE, Ellsworth DS (2012) Temperature responses of leaf net photosynthesis: the role of component processes. Tree Physiol 32:219–231

    Article  CAS  PubMed  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Article  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Loveys BR, Scheurwater I, Pons TL, Fitter AH, Atkin OK (2002) Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast- and slow-growing plant species. Plant Cell Environ 25:975–987

    Article  Google Scholar 

  • Maseyk K, Grünzweig JM, Rotenberg E, Yakir D (2008) Respiration acclimation contributes to high carbon-use efficiency in a seasonally dry pine forest. Global Change Biol 14:1553–1567

    Article  Google Scholar 

  • Medlyn BE, Dreyer E, Ellsworth D, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassmeyer J, Walcroft A, Wang K, Loustau D (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ 25:1167–1179

    Article  CAS  Google Scholar 

  • Miroslavov EA, Kravkina IM (1991) Comparative analysis of chloroplasts and mitochondria in leaf chlorenchyma from mountain plants grown at different altitudes. Ann Bot 68:195–200

    Article  Google Scholar 

  • Muller B, Pantin F, Genard M, Turc O, Freixes S, Piques M, Gibon Y (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62:1715–1729

    Article  CAS  PubMed  Google Scholar 

  • Noguchi K, Yamori W, Hikosaka K, Terashima I (2015) Homeostasis of the temperature sensitivity of respiration over a range of growth temperatures indicated by a modified Arrhenius model. New Phytol. doi:10.1111/nph.13339

    PubMed  Google Scholar 

  • O’Sullivan OS, Weerasinghe KWLK, Evans JR, Egerton JJG, Tjoelker MG, Atkin OK (2013) High-resolution temperature responses of leaf respiration in snow gum (Eucalyptus pauciflora) reveal high-temperature limits to respiratory function. Plant Cell Environ 36:1268–1284

    Article  PubMed  Google Scholar 

  • Ow LF, Whitehead D, Walcroft AS, Turnbull MH (2010) Seasonal variation in foliar carbon exchange in Pinus radiata and Populus deltoides: respiration acclimates fully to changes in temperature but photosynthesis does not. Global Change Biol 16:288–302

    Article  Google Scholar 

  • Plaxton WC, Podesta FE (2006) The functional organization and control of plant respiration. Crit Rev Plant Sci 25:159–198

    Article  CAS  Google Scholar 

  • Portis AR Jr (2003) Rubisco activase: rubisco’s catalytic chaperone. Photosynth Res 75:11–27

    Article  CAS  PubMed  Google Scholar 

  • Posch S, Warren CR, Kruse J, Guttenberger H, Adams MA (2008) Nitrogen allocation and the fate of absorbed light in 21-year-old Pinus radiata. Tree Physiol 28:375–384

    Article  CAS  PubMed  Google Scholar 

  • Pyl E-T, Piques M, Ivakov A, Schulze W, Ishihara H, Stitt M, Sulpice R (2012) Metabolism and growth in Arabidopsis depend on the daytime temperature but are temperature-compensated against cool nights. Plant Cell 24:2443–2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75:663–670

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg H, Loreto F, Polle A et al (2006) Physiological responses of forest trees to heat and drought. Plant Biology 8:556–571

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Calcerrada J, Atkin OK, Robson M, Zaragoza-Castells J, Gil L, Aranda I (2009) Thermal acclimation of leaf dark respiration of beech seedlings experiencing summer drought in high and low light environments. Tree Physiol 30:214–224

    Article  PubMed  CAS  Google Scholar 

  • Ruuska SA, Andrews TJ, Badger MR, Price GD, von Caemmerer S (2000) The role of chloroplast electron transport and metabolites in modulating rubisco activity in tobacco. Insights from transgenic plants with reduced amounts of cytochrome b/f complex or glyceraldehyde 3-phosphate dehydrogenase. Plant Physiol 122:491–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186

    Article  CAS  PubMed  Google Scholar 

  • Schauer N, Steinhauser D, Strelkov S et al (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579:1332–1337

    Article  CAS  PubMed  Google Scholar 

  • Seemann JR, Berry JA, Downton WJ (1984) Photosynthetic response and adaptation to high temperature in desert plants. Plant Physiol 75:364–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Siedow JA, Day DA (2000) Respiration and photorespiration. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 676–728

    Google Scholar 

  • Slayter RO (1977) Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. ex Spreng. IV. Temperature response of four populations grown at different temperatures. Aust J Plant Physiol 4:583–594

    Article  Google Scholar 

  • Slot M, Kitajima K (2015) General patterns of leaf respiration to elevated temperatures across biomes and plant types. Oecologia 177:885–900

    Article  PubMed  Google Scholar 

  • Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Global Change Biol 15:308–314

    Google Scholar 

  • Smith AM, Stitt M (2007) Coordination of carbon supply and plant growth. Plant Cell Environ 30:1126–1149

    Article  CAS  PubMed  Google Scholar 

  • Stitt M (1990) Fructose 2,6-bisphosphate as a regulatory metabolite in plants. Annu Rev Plant Physiol Plant Mol Biol 41:153–185

    Article  CAS  Google Scholar 

  • Stitt M, Grosse H (1988) Interactions between sucrose synthesis and CO2 fixation. IV. Temperature-dependent adjustment of the relation between sucrose synthesis and CO2-fixation. J Plant Physiol 133:392–400

    Article  CAS  Google Scholar 

  • Stitt M, Hurry V (2002) A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Schulze E-D (1994) Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular eco-physiology. Plant Cell Environ 17:465–487

    Article  CAS  Google Scholar 

  • Strand Å, Hurry VM, Henkes S, Huner NPA, Gustaffsson P, Gardeström P et al (1999) Acclimation of Arabidopsis leaves developing at low temperatures. Increasing cytoplasmic volume accompanies increased activities of enzymes in the Calvin cycle and in the sucrose-biosynthesis pathway. Plant Physiol 119:1387–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tardieu F, Granier C, Muller B (2011) Water deficit and growth. Co-ordinating processes without an orchestrator? Curr Opin Plant Biol 14:283–289

    Article  PubMed  Google Scholar 

  • Tengberg M (2003) Research into the origins of date palm domestication. The date palm: from traditional resource to Green Wealth. The Emirates Center for Strategic Studies and Research, Abu Dhabi, pp 51–62

    Google Scholar 

  • Thornley JHM (2011) Plant growth and respiration re-visited: maintenance respiration defined—it is an emergent property of, not a separate process within, the system—and why the respiration: photosynthesis ratio is conservative. Ann Bot 108:1365–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB (1999) Acclimation of respiration to temperature and CO2 in seedlings of boreal tree species in relation to plant size and relative growth rate. Global Change Biol 49:679–691

    Article  Google Scholar 

  • Tjoelker MG, Oleksyn J, Reich PB (2001) Modelling respiration of vegetation: evidence for a general temperature-dependent Q10. Global Change Biol 7:223–230

    Article  Google Scholar 

  • Von Caemmerer S (2013) Steady-state models of photosynthesis. Plant Cell Environ 36:1617–1630

    Article  CAS  Google Scholar 

  • Von Caemmerer S, Evans JR (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ 38:629–637

    Article  CAS  Google Scholar 

  • Walker B, Ariza LS, Kaines S, Badger MR, Cousins AB (2013) Temperature response of in vivo Rubisco kinetics and mesophyll conductance in Arabidopsis thaliana: comparisons to Nicotiana tabacum. Plant Cell Environ 36:2108–2119

    Article  CAS  PubMed  Google Scholar 

  • Warren CR (2008) Does growth temperature affect the temperature responses of photosynthesis and internal conductance to CO2? A test with Eucalyptus regnans. Tree Physiol 28:11–19

    Article  CAS  PubMed  Google Scholar 

  • Warren CR, Adams MA (2004) Evergreen trees do not maximize instantaneous photosynthesis. Trends Plant Sci 9:270–274

    Article  CAS  PubMed  Google Scholar 

  • Warren CR, Dreyer E (2006) Temperature response of photosynthesis and internal conductance to CO2: results from two independent approaches. J Exp Bot 57:3057–3067

    Article  CAS  PubMed  Google Scholar 

  • Warren CR, Dreyer E, Adams MA (2003) Photosynthesis-Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores. Trees Struct Funct 17:359–366

    CAS  Google Scholar 

  • Way DA, Yamori W (2014) Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth Res 119:89–100

    Article  CAS  PubMed  Google Scholar 

  • Weih M, Karlsson PS (2001) Growth response of mountain birch to air and soil temperature: is increasing leaf-nitrogen content an acclimation to lower air temperature? New Phytol 150:147–155

    Article  Google Scholar 

  • Wullschleger SD (1993) Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 species. J Exp Bot 44:907–920

    Article  CAS  Google Scholar 

  • Xu CY, Griffin KL (2006) Seasonal variation in the temperature response of leaf respiration in Quercus rubra: foliage respiration and leaf properties. Funct Ecol 20:778–789

    Article  Google Scholar 

  • Yamasaki T, Yamakawa T, Yamane Y, Koike H, Satoh K, Katoh S (2002) Temperature acclimation of photosynthesis and related changes in photosystem II electron transport in winter wheat. Plant Physiol 128:1087–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamori W, von Caemmerer S (2009) Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and Rubisco activation state: insights from transgenic tobacco with reduced amounts of Rubisco activase. Plant Physiol 151:2073–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamori W, Noguchi K, Terashima I (2005) Temperature acclimation of photosynthesis in spinach leaves: analyses of photosynthetic components and temperature dependencies of photosynthetic partial reactions. Plant Cell Environ 28:536–547

    Article  CAS  Google Scholar 

  • Yamori W, Nagai T, Makino A (2011) The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species. Plant Cell Environ 34:764–777

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Masumoto C, Fukayama H, Makino A (2012) Rubisco activase is a key regulator of non-steady state photosynthesis at any leaf temperature and to a lesser extent, of steady-state photosynthesis at high temperature. Plant J 71:871–880

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4 and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117

    Article  CAS  PubMed  Google Scholar 

  • Zauber H, Schulze WX (2012) Proteomics wants cRacker: automated standardized data analysis of LC/MS derived proteomic data. J Proteome Res 11:5548–5555

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Kallis RP, Ewy RG, Portis AR Jr (2002) Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proc Natl Acad Sci USA 99:3330–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate support from the Deanship of Scientific Research at King Saud University for funding this Prolific Research Group (PRG-1436-24). The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Kruse.

Additional information

Communicated by U. Luettge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruse, J., Adams, M.A., Kadinov, G. et al. Characterization of photosynthetic acclimation in Phoenix dactylifera by a modified Arrhenius equation originally developed for leaf respiration. Trees 31, 623–644 (2017). https://doi.org/10.1007/s00468-016-1496-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1496-0

Keywords

Navigation