Skip to main content
Log in

Feature synthesis for image classification and retrieval via one-against-all perceptrons

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Most existing content-based image retrieval and classification systems rely on low-level features which are automatically extracted from images. However, often these features lack the discrimination power needed for accurate description of the image content, and hence, they may lead to a poor retrieval or classification performance. We propose a novel technique to improve low-level features which uses parallel one-against-all perceptrons to synthesize new features with a higher discrimination power which in turn leads to improved classification and retrieval results. The proposed method can be applied on any database and low-level features as long as some ground-truth information is available. The main merits of the proposed technique are its simplicity and faster computation compared to existing feature synthesis methods. Extensive simulation results show a significant improvement in the features’ discrimination power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bäck T, Schwefel HP (1993) An overview of evolutionary algorithms for parameter optimization. Evolut. Comput. 1(1):1–23. doi:10.1162/evco.1993.1.1.1

    Article  Google Scholar 

  2. Bergamo A, Torresani L, Fitzgibbon A (2011) Picodes: learning a compact code for novel-category recognition. In: Shawe-Taylor J, Zemel R, Bartlett P, Pereira F, Weinberger K (eds) Advances in neural information processing systems 24, pp 2088–2096

  3. Bhanu B, Yu J, Tan X, Lin Y (2004) Feature synthesis using genetic programming for face expression recognition. In: Proceedings of genetic and evolutionary computation conference, Part II, Seattle, pp 896–907. doi:10.1007/978-3-540-24855-2_103

  4. Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27. doi:10.1145/1961189.1961199

    Article  Google Scholar 

  5. Chua TS, Tang J, Hong R, Li H, Luo Z, Zheng Y (2009) Nus-wide: a real-world web image database from national university of Singapore. In: Proceedings of the ACM international conference on image and video retrieval, ACM, New York, pp 48:1–48:9. doi:10.1145/1646396.1646452

  6. Daskalaki S, Kopanas I, Avouris N (2006) Evaluation of classifiers for an uneven class distribution problem. Appl Artif Intel 20:1–37. doi:10.1080/08839510500313653

    Article  Google Scholar 

  7. Dong A, Bhanu B, Lin Y (2005) Evolutionary feature synthesis for image databases. In: Proceedings of 7th IEEE workshop on application of computer vision, vol 1, pp 330–335. doi:10.1109ACVMOT.2005.50

  8. Fei-Fei L, Fergus R, Perona P (2007) Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. Comput Vis Image Underst 106(1):59–70. doi:10.1016/j.cviu.2005.09.012

    Article  Google Scholar 

  9. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley Longman Publishing Co. Inc, Boston

    MATH  Google Scholar 

  10. Jiang YG, Wang J, Xue X, Chang SF (2013) Query-adaptive image search with hash codes. IEEE Trans Multimed 15(2):442–453. doi:10.1109/TMM.2012.2231061

    Article  Google Scholar 

  11. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol 4, pp 1942–1948. doi:10.1109/ICNN.1995.488968

  12. Kiranyaz S, Ince T, Yildirim A, Gabbouj M (2009) Evolutionary artificial neural networks by multi-dimensional particle swarm optimization. Neural Netw 22(10):1448–1462. doi:10.1016/j.neunet.2009.05.013

    Article  Google Scholar 

  13. Kiranyaz S, Ince T, Yildirim A, Gabbouj M (2010) Fractional particle swarm optimization in multidimensional search space. IEEE Trans Syst Man Cybern Part B Cybern 40(2):298–319. doi:10.1109/TSMCB.2009.2015054

    Article  Google Scholar 

  14. Kiranyaz S, Pulkkinen J, Ince T, Gabbouj M (2011a) Multi-dimensional evolutionary feature synthesis for content-based image retrieval. In: Proceedings of 18th IEEE international conference on image processing, Brussels, pp 3645–3648. doi:10.1109/ICIP.2011.6116508

  15. Kiranyaz S, Uhlmann S, Pulkkinen J, Gabbouj M, Ince T (2011b) Collective network of evolutionary binary classifiers for content-based image retrieval. In: Proceedings of IEEE workshop on evolving and adaptive intelligent systems, Paris, pp 147–154. doi:10.1109/EAIS.2011.5945925

  16. Kiranyaz S, Ince T, Uhlmann S, Gabbouj M (2012) Collective network of binary classifier framework for polarimetric sar image classification: an evolutionary approach. IEEE Trans Syst Man Cybern Part B Cybern 42(4):1169–1186. doi:10.1109/TSMCB.2012.2187891

    Article  Google Scholar 

  17. Kiranyaz S, Ince T, Gabbouj M (2014) Multidimensional particle swarm optimization for machine learning and pattern recognition. Springer, NewYork

    Book  MATH  Google Scholar 

  18. Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  19. Li P, Wang M, Cheng J, Xu C, Lu H (2013) Spectral hashing with semantically consistent graph for image indexing. IEEE Trans Multimed 15(1):141–152. doi:10.1109/TMM.2012.2199970

    Article  Google Scholar 

  20. Li R, Bhanu B, Dong A (2005) Coevolutionary feature synthesized em algorithm for image retrieval. In: Proceedings of the 13th annual ACM international conference on multimedia, ACM, New York, pp 696–705. doi:10.1145/1101149.1101304

  21. Li R, Bhanu B, Dong A (2008) Feature synthesized em algorithm for image retrieval. ACM Trans Multimed Comput Commun Appl 4(2):10:1–10:24. doi:10.1145/1352012.1352014

    Article  Google Scholar 

  22. Lin Y, Bhanu B (2005) Evolutionary feature synthesis for object recognition. IEEE Trans Syst Man Cybern Part C Appl Rev 35(2):156–171. doi:10.1109/TSMCC.2004.841912

    Article  Google Scholar 

  23. Mäkinen T, Kiranyaz S, Raitoharju J, Gabbouj M (2012) An evolutionary feature synthesis approach for content-based audio retrieval. EURASIP J Audio Speech Music Process 2012(23):1–23. doi:10.1186/1687-4722-2012-23

    Google Scholar 

  24. Manjunath B, Salembier P, Sikora T (2002) Introduction to MPEG-7. Wiley, San Francisco

    Google Scholar 

  25. Mittelman R, Lee H, Kuipers B, Savarese S (2013) Weakly supervised learning of mid-level features with beta-bernoulli process restricted boltzmann machines. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 476–483. doi:10.1109/CVPR.2013.68

  26. Torresani L, Szummer M, Fitzgibbon A (2010) Efficient object category recognition using classemes. In: Proceedings of 11th European conference on computer vision, Part I, Heraklion, pp 776–789

  27. Yu J, Bhanu B (2006) Evolutionary feature synthesis for facial expression recognition. Pattern Recognit Lett 27(11):1289–1298. doi:10.1016/j.patrec.2005.07.026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenni Raitoharju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raitoharju, J., Kiranyaz, S. & Gabbouj, M. Feature synthesis for image classification and retrieval via one-against-all perceptrons. Neural Comput & Applic 29, 943–957 (2018). https://doi.org/10.1007/s00521-016-2504-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2504-4

Keywords

Navigation