Skip to main content
Log in

Extraradical development and contribution to plant performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial rootzone drying

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Sweet potato plants were grown with or without Glomus intraradices in split-root pots with adjacent root compartments containing a soil with a low availability of phosphate. One fungal tube, from which root growth was excluded, was inserted into each root compartment. During 4 weeks before harvest, the soil moisture level in either both or only one of the two root-compartments of each pot was decreased. Controls remained well watered. Low soil moisture generally had a negative effect on the amount of extraradical mycelium of G. intraradices extracted from the fungal tubes. Sporulation in the fungal tubes was much higher compared with the soil in the root compartment, but remained unaffected by the soil moisture regime. Concentrations of P in extraradical mycelium were much lower than usually found in plants and fungi, while P concentrations in associated mycorrhizal host plant tissues were in an optimum range. This suggests efficient transfer of P from the extraradical mycelium to the host plant. Despite the negative effect of a low soil moisture regime on extraradical G. intraradices development, the symbiosis indeed contributed significantly to P uptake of plants exposed to partial rootzone drying. The possibility that extraradical arbuscular mycorrhizal fungal development was limited by P availability under dry soil conditions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827. doi:10.1038/nature03608

    Article  CAS  PubMed  Google Scholar 

  • Al-Karaki GN, Clark RB (1998) Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. J Plant Nutr 21:263–276. doi:10.1080/01904169809365401

    Article  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. doi:10.1007/s005720100097

    Article  Google Scholar 

  • Augé RM, Moore JL, Stutz JC, Sylvia DM, Al-Agely A, Saxton AM (2003) Relating dehydration resistance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae. J Plant Physiol 160:1147–1156. doi:10.1078/0176-1617-01154

    Article  PubMed  Google Scholar 

  • Augé RM, Toler HD, Moore JL, Cho K, Saxton AM (2007) Comparing contributions of soil versus root colonization to variations in stomatal behaviour and soil drying in mycorrhizal Sorghum bicolor and Cucurbita pepo. J Plant Physiol 164:1289–1299. doi:10.1016/j.jplph.2006.08.005

    Article  PubMed  Google Scholar 

  • Bååth E, Söderström B (1980) Comparisons of the agar-film and membrane-filter methods for the estimation of hyphal lengths in soil, with particular reference to the effect of magnification. Soil Biol Biochem 12:385–387. doi:10.1016/0038-0717(80)90014-0

    Article  Google Scholar 

  • Bago B, Bécard G (2002) Bases of the obligate biotrophy of arbuscular mycorrhizal fungi. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal Technology in Agriculture. Birkhäuser, Basel, pp 33–48

    Chapter  Google Scholar 

  • Bergmann W (1992) Nutritional disorders of cultivated plants—development, visual and analytical diagnosis. Fischer, Jena

    Google Scholar 

  • Bethlenfalvay GJ, Brown J, Milford S, Ames RN, Thomas RS (1988) Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol Plant 72:565–571. doi:10.1111/j.1399-3054.1988.tb09166.x

    Article  CAS  Google Scholar 

  • Colpaert JV, Adriaensen K, Muller LAH, Lambaerts M, Faes C, Carleer R, Vangronsveld J (2005) Element profiles and growth in Zn-sensitive and Zn-resistant suilloid fungi. Mycorrhiza 15:628–634. doi:10.1007/s00572-005-0009-6

    Article  CAS  PubMed  Google Scholar 

  • Dandan Z, Zhiwei Z (2007) Biodiversity of arbuscular mycorrhizal fungi in the hot-dry valley of the Jinsha River, southwest China. Appl Soil Ecol 37:118–128. doi:10.1016/j.apsoil.2007.06.003

    Article  Google Scholar 

  • Davies JD, Wilkinson S, Loveys B (2002) Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol 153:449–460. doi:10.1046/j.0028-646X.2001.00345.x

    Article  CAS  Google Scholar 

  • Dodd IC (2007) Soil moisture heterogeneity during deficit irrigation alters root-to-shoot signalling of abscisic acid. Funct Plant Biol 34:439–448. doi:10.1071/FP07009

    Article  CAS  Google Scholar 

  • Drew EA, Murray RS, Smith SE (2006) Functional diversity of external hyphae of AM fungi: ability to colonise new hosts is influenced by fungal species, distance and soil conditions. Appl Soil Ecol 32:350–365. doi:10.1016/j.apsoil.2005.07.005

    Article  Google Scholar 

  • Dry PR, Loveys BR (1999) Grapevine shoot growth and stomatal conductance are reduced when part of the root system is dried. Vitis 38:151–156

    Google Scholar 

  • Faber BA, Zasoski RD, Munns DN (1991) A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69:87–94

    Article  Google Scholar 

  • Gahoonia TS, Raza S, Nielsen NE (1994) Phosphorus depletion in the rhizosphere as influenced by soil moisture. Plant Soil 159:213–218. doi:10.1007/BF00009283

    Article  CAS  Google Scholar 

  • Gericke S, Kurmies B (1952) Die colorimetrische Phosphorsäurebestimmung mit Ammonium-Vanadat-Molybdat und ihre Anwendung in der Pflanzenanalyse. Z Pflanz Bodenkunde 159:11–21

    Google Scholar 

  • Grelet N (1957) Growth limitation and sporulation. J Appl Bacteriol 20:315–324

    Google Scholar 

  • Gryndler M, Jansa J, Hršelová H, Chvátalová I, Vosátka M (2003) Chitin stimulates development and sporulation of arbuscular mycorrhizal fungi. Appl Soil Ecol 22:283–287. doi:10.1016/S0929-1393(02)00154-3

    Article  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234. doi:10.1023/A:1026565701391

    Article  CAS  Google Scholar 

  • Khalvati MA, Hu Y, Mozafar A, Schmidthalter U (2005) Quantification of water uptake by Arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biol 7:706–712. doi:10.1055/s-2005-872893

    Article  CAS  PubMed  Google Scholar 

  • Kormanik P, McGraw AC (1982) Quantification of vesicular–arbuscular mycorrhizae in plant roots. In: Schenck NC (ed) Methods and principals of mycorrhizal research. The American Phytopathological Society, St. Paul, pp 37–45

    Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–505. doi:10.1016/S0953-7562(89)80195-9

    Article  Google Scholar 

  • Kwapata MB, Hall AE (1985) Effects of moisture regime and phosphorus on mycorrhizal infection, nutrient uptake and growth of cowpeas (Vigna unguiculata (L.) WALP.). Field Crops Res 12:241–250. doi:10.1016/0378-4290(85)90072-3

    Article  Google Scholar 

  • Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67. doi:10.1104/pp. 003525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Mathimaran N, Ruh R, Vullioud P, Frossard E, Jansa J (2005) Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza 16:61–66. doi:10.1007/s00572-005-0014-9

    Article  CAS  PubMed  Google Scholar 

  • Moreira M, Nogueira MA, Tsai SM, Gomes-da-Costa SM, Cardoso EJBN (2007) Sporulation and diversity of arbuscular mycorrhizal fungi in Brazil Pine in the field and in the greenhouse. Mycorrhiza 17:519–526. doi:10.1007/s00572-007-0124-7

    Article  PubMed  Google Scholar 

  • Neumann E, George E (2004) Colonisation with the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) enhanced phosphorus uptake from dry soil in Sorghum bicolor (L). Plant Soil 261:245–255. doi:10.1023/B:PLSO.0000035573.94425.60

    Article  CAS  Google Scholar 

  • Neumann E, George E (2005) Extraction of extraradical arbuscular mycorrhizal mycelium from compartments filled with soil and glass beads. Mycorrhiza 15:533–537. doi:10.1007/s00572-005-0361-6

    Article  PubMed  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris E-A, Boller T, Wiemken A (2004) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283. doi:10.1111/j.1469-8137.2004.01235.x

    Article  Google Scholar 

  • Pinior A, Grunewaldt-Stöcker G, von Alten H, Strasser RJ (2005) Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 15:596–605. doi:10.1007/s00572-005-0001-1

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750. doi:10.1093/jxb/erh188

    Article  CAS  PubMed  Google Scholar 

  • Roth K, Schulin R, Flühler H, Attinger W (1990) Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour Res 26:2267–2273

    Google Scholar 

  • Saeed H, Grove IG, Kettlewell PS, Hall NW (2008) Potential of partial rootzone drying as an alternative irrigation technique for potatoes (Solanum tuberosum). Ann Appl Biol 152:71–80. doi:10.1111/j.1744-7348.2007.00196.x

    Article  Google Scholar 

  • Sanmee R, Dell B, Lumyong P, Izumori K, Lumyong S (2003) Nutritive value of popular wild edible mushrooms from northern Thailand. Food Chem 82:527–532. doi:10.1016/S0308-8146(02)00595-2

    Article  CAS  Google Scholar 

  • Schaeffer P, Millet J, Aubert J-P (1965) Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A 54:704–711. doi:10.1073/pnas.54.3.704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schüller H (1969) Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates im Boden. Z Pflanzenernähr Bodenkd 123:48–63. doi:10.1002/jpln.19691230106

    Article  Google Scholar 

  • Silva FSB, Yano-Melo AM, Brandão JAC, Maia LC (2005) Sporulation of arbuscular mycorrhizal fungi using Tris-HCl buffer in addition to nutrient solutions. Braz J Microbiol 36:327–332

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P-uptake. New Phytol 162:511–524. doi:10.1111/j.1469-8137.2004.01039.x

    Article  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332. doi:10.1016/S0953-7562(96)80164-X

    Article  Google Scholar 

  • Staddon PL, Thompson K, Jakobsen I, Grime JP, Askew AP, Fitter AH (2003) Mycorrhizal fungal abundance is affected by long-term climatic manipulation in the field. Glob Change Biol 9:186–194. doi:10.1046/j.1365-2486.2003.00593.x

    Article  Google Scholar 

  • Strassner O, Köhl K, Römheld V (1999) Overestimation of apoplastic Fe in roots of soil grown plants. Plant Soil 210:179–187. doi:10.1023/A:1004650506592

    Article  Google Scholar 

  • Struble JE, Skipper HD (1988) Vesicular-arbuscular mycorrhizal fungal spore production as influenced by plant species. Plant Soil 109:277–280. doi:10.1007/BF02202095

    Article  Google Scholar 

  • Tennant D (1975) A test of a modified line intersect method of estimating root length. J Ecol 63:995–1001. doi:10.2307/2258617

    Article  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515. doi:10.1046/j.1469-8137.2002.00470.x

    Article  Google Scholar 

  • Yamaç M, Yildiz D, Sarikürkcü C, Çelikkollu M, Solak HM (2007) Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chem 103:263–267. doi:10.1016/j.foodchem.2006.07.041

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Mrs. Maria Ruckwied and Mrs. Elke Dachtler (Institute for Plant Nutrition, Hohenheim University) for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Neumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, E., Schmid, B., Römheld, V. et al. Extraradical development and contribution to plant performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial rootzone drying. Mycorrhiza 20, 13–23 (2009). https://doi.org/10.1007/s00572-009-0259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-009-0259-9

Keywords

Navigation