Skip to main content
Log in

Genetic diversity and structure among Iranian tall fescue populations based on genomic-SSR and EST-SSR marker analysis

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Tall fescue (Festuca arundinacea Schreb. subsp. arundinacea) is one of the most economically important forage grasses in cold and temperate regions of the world. In this study, we have assessed the genetic diversity and structure of wild Iranian tall fescue populations. Thirty-seven individuals from nine natural populations from northern, western, and southern Iranian mountain ranges were analyzed using six genomic-SSRs and five EST-SSRs primer pairs. Our analysis has demonstrated that transcribed EST-SSR regions showed levels of polymorphism similar to genomic-SSR regions. UPGMA, repeated bisection, and model-based Bayesian STRUCTURE clustering methods coupled with neighbor-net network were used to establish six divergent groups of individuals. F ST estimates among clusters showed moderate to low genetic structure. Within-group genetic diversity estimate H and partial correlations between genetic and geographic distances among populations suggested that western Zagros population was related to the rest of the Iranian individuals. The isolation-by-distance hypothesis was not supported by SSR data and the present geographical sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Bor NL (1970) Gramineae. In: Rechinger KH (ed) Flora iranica, vol 70. Akademische Druk u. Verlagsanstalt, Graz, pp 1–573

  • Buckler ES (1999) Phylogeographer: a tool for developing and testing phylogeographic hypotheses, 0.3 ed. http://stat-gen.ncsu.edu/buckler

  • Buckler ES, Goodman MM, Holtsford TP, Doebley JF, Sánchez G (2006) Phylogeography of the wild subspecies of Zea mays. Maydica 51:123–134

    Google Scholar 

  • Catalán P (2006) Phylogeny and evolution of Festuca L. and related genera of subtribe Loliinae (Poeae, Poaceae). In: Sharma AK, Sharma A (eds) Plant genome, biodiversity and evolution, part D, vol 1. Science Publishers, Enfield, pp 255–303

  • Catalán P, Torrecilla P, Lopez-Rodriguez JA, Olmstead RG (2004) Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Mol Phylogen Evol 31:517–541

    Article  Google Scholar 

  • Catalán P, Segarra-Moragues JG, Palop-Esteban M, Moreno C, Gonzalez-Candelas F (2006) A Bayesian approach for discriminating among alternative inheritance hypotheses in plant polyploids: the allotetraploid origin of genus Borderea (Discoreaceae). Genetics 172:1939–1953

    Article  PubMed  Google Scholar 

  • Chabane K, Ablett GA, Cordeiro GM, Valkoun J, Henry RJ (2005) EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Resour Crop Evol 52:903–909

    Article  CAS  Google Scholar 

  • Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722

    Article  CAS  Google Scholar 

  • Díaz-Perez A, Sequeira M, Santos-Guerra A, Catalán P (2008) Multiple colonizations, in situ speciation, and volcanism-associated stepping-stone dispersals shaped the phylogeography of the Macaronesian red fescues (Festuca L., Gramineae). Syst Biol 57:732–749

    Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Dietz J (1983) Permutation tests for association between two distance matrices. Syst Zool 32:21–26

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry 19:11–15

    Google Scholar 

  • Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L (1993) Winamova v. 1.5: analysis of molecular variance. Genetics and Biometry Laboratory, University of Geneva, Geneva. http://cmpg.unibe.ch/excoffier/default.htm

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Falahati-Anbaran M, Habashi AA, Esfahany M, Mohammadi SA, Ghareyazie B (2007) Population genetic structure based on SSR markers in alfalfa (Medigaco sativa L.) from various regions contiguous to the centres of origin of the species. J Genet 86:59–63

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed  CAS  Google Scholar 

  • Fjellheim S, Rognli OA, Fosnes K, Brochmann C (2006) Phylogeographical history of the widespread meadow fescue (Festuca pratensis Huds.) inferred from chloroplast DNA sequences. J Biogeogr 33:1470–1478

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, UK

    Google Scholar 

  • George J, Dobrowolski MP, de Jong E, Cogan NOI, Smith KF, Forster J (2006) Assessment of genetic diversity in cultivars of white clover (Trifolium repens L.) detected by SSR polymorphisms. Genome 49:919–930

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genom 270:315–323

    Article  CAS  Google Scholar 

  • Harper JA, Thomas ID, Lovatt JA, Thomas HM (2004) Physical mapping of rDNA sites in posible diploid progenitors of polyploid Festuca species. Pl Syst Evol 245:163–168

    Article  CAS  Google Scholar 

  • Hewitt GM (1999) Postglacial recolonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hollingsworth PM, Ennos RA (2004) Neighbour joining trees, dominant markers and population genetic structure. Heredity 92:490–498

    Article  PubMed  CAS  Google Scholar 

  • Humphreys MW, Yadav RS, Cairns AJ, Turner LB, Humphreys J, Skøt L (2005) A changing climate for grassland research. New Phytol 169:9–26

    Article  Google Scholar 

  • Huson D, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  PubMed  CAS  Google Scholar 

  • Inda LA, Segarra-Moragues JG, Müler J, Peterson PM, Catalán P (2008) Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Mol Phylogen Evol 46:932–957

    Article  CAS  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007a) CLUMPP software and manual. University of Michigan, Ann Arbor

  • Jakobsson M, Rosenberg NA (2007b) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:801–1806

    Article  Google Scholar 

  • Jauhar PP (1975) Genetic regulation of diploid-like chromosome pairing in the hexaploid species Festuca arundinacea Schreb. and F. rubra L. (Gramineae). Chromosoma 52:363–382

    Article  Google Scholar 

  • Jenkins TJ (1933) Interspecific and intergeneric hybrids in herbage grasses. Initial crosses. J Genet 28:205–264

    Article  Google Scholar 

  • Kirigwi FM, Zwonitzer JC, Mian MAR, Wang ZY, Saha M (2008) Microsatellite markers and genetic diversity assessment in Lolium temulentum. Genet Resour Crop Evol 55:105–114

    Article  CAS  Google Scholar 

  • Lauvergeat V, Barre P, Bonnet M, Ghesquire M (2005) Sixty simple sequence repeat markers for use in the Festuca–Lolium complex of grasses. Mol Ecol Notes 5:401–405

    Article  CAS  Google Scholar 

  • Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109:361–369

    Article  PubMed  CAS  Google Scholar 

  • Majidi MM, Mirlohi AF, Sayed-Tabatabaei DE (2006) AFLP analysis of genetic variation in Iranian fescue accessions. Pak J Biol Sci 9:1869–1876

    Article  CAS  Google Scholar 

  • Mian MAR, Saha MC, Hopkins AA, Wang Z (2005) Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses. Genome 48:637–647

    Article  PubMed  CAS  Google Scholar 

  • Obbard DJ, Harris SA, Pannel JR (2006) Simple allelic-phenotype diversity and differentiation statistics for allopolyploids. Heredity 97:296–303

    Article  PubMed  CAS  Google Scholar 

  • Pasakinskiene I, Griffiths CM, Bettany AJE, Paplauskiene V, Humphreys MW (2000) Anchored simple-sequence repeats as primers to generate species specific DNA markers in Lolium and Festuca grasses. Theor Appl Genet 100:384–390

    Article  CAS  Google Scholar 

  • Pashley CH, Ellis JR, McCauley DE, Burke JM (2006) EST databases as a source for molecular markers: lessons from Helianthus. J Hered 97:381–388

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Ramezani E, Marvie M, Knapp HD, Ahmadi H, Joosten H (2008) The late-Holocene vegetation history of the central Caspian (Hyrcanian) forests of northern Iran. Holocene 18:307–321

    Article  Google Scholar 

  • Rasmussen M, Karypis G (2004) gCLUTO an interactive clustering, visualization, and analysis system. CSE/UMN technical report no. 04-021. http://www-users.cs.umn.edu/~mrasmus/gcluto/index.shtml

  • Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791

    Article  PubMed  Google Scholar 

  • Saha MC, Cooper JD, Mian MAR, Chekhovskiy K, May GD (2006) Tall fescue genomic SSR markers: development and transferability across multiple grass species. Theor Appl Genet 113:1449–1458

    Article  PubMed  CAS  Google Scholar 

  • Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726

    Article  CAS  Google Scholar 

  • Sleper DA (1985) Breeding tall fescue. J Plant Breed Rev 3:313–342

    Google Scholar 

  • Smouse P, Long J, Sokal R (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632

    Article  Google Scholar 

  • Tams SH, Bauer E, Oettler G, Melchinger AE (2004) Genetic diversity in European winter triticale determined with SSR markers and coancestry coefficient. Theor Appl Genet 108:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Tarasov PE, Volkova VS, Webb T, Guiot J, Andreev AA, Bezusko LG, Bezusko TV, Bykova GV, Dorofeyuk NI, Kvavadze EV, Osipova IM, Panova NK, Sevastyanov DV (2000) Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J Biogeogr 27:609–620

    Article  Google Scholar 

  • Thomas HM, Morgan WG, Humphreys MW (2003) Designing grasses with a future—combining the attributes of Lolium and Festuca. Euphytica 133:19–26

    Article  Google Scholar 

  • Varshney RK, Graner A, Sorrels ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  PubMed  CAS  Google Scholar 

  • Xu WW, Sleper DA (1994) Phylogeny of tall fescue and related species using RFLPs. Theor Appl Genet 88:685–690

    Article  CAS  Google Scholar 

  • Zhao Y, Karypis G (2005) Data clustering in life sciences. Mol Biotechnol 31:55–80

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to two anonymous reviewers for their critical review of an earlier version of the manuscript. This study was funded by the Agricultural Biotechnology Research Institute of Iran (ABRII). M.S.T. was supported by a doctorate fellowship from the Office of Graduate Studies of the University of Isfahan (Iran). A.D.P. and P.C. were supported by the University of Zaragoza Bioflora research group and BIFI Institute. A.D.P. was also supported by a Central University of Venezuela CDCH PhD fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Díaz-Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharifi Tehrani, M., Mardi, M., Sahebi, J. et al. Genetic diversity and structure among Iranian tall fescue populations based on genomic-SSR and EST-SSR marker analysis. Plant Syst Evol 282, 57–70 (2009). https://doi.org/10.1007/s00606-009-0207-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-009-0207-3

Keywords

Navigation