Skip to main content
Log in

Drying of a Natural Soil Under Evaporative Conditions: A Comparison of Different Magnetic Resonance Methods

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Soils are highly complex and heterogeneous porous materials, and thus measuring water distribution non-invasively with high accuracy and adequate spatial resolution still remains challenging. The first few centimeters of a soil surface control the vapor flux to the atmosphere justifying the need for high spatial resolution measurements of moisture content. The objective of this study was to compare and assess the feasibility of various high-resolution magnetic resonance (MR) methods to characterize an unsaturated porous system. We employed (1) a spin-echo, (2) three types of single-point imaging and (3) a unilateral three-magnet array to monitor T 1 and T 2,app relaxation time spectra and the effective moisture saturation (ΘMR) of a silt loam under progressing desaturation with focus on an emerging unsaturated surface layer, which is predicted by theory. During the first stage of drying where evaporation occurred at the soil surface, all methods showed homogeneously distributed moisture. A decreasing ΘMR and a shift in the T 1 and T 2,app relaxation time spectra to shorter values indicated the commencement of stage 2 evaporation coincided with an increasing unsaturated layer. At low water contents, the most suitable method to determine the extent of a desaturated surface zone with high accuracy was found to be single--point ramped imaging with T 1 enhancement. As a simple and low-cost device the unilateral three-magnet array was feasible to monitor the drying process until the dry surface layer developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Hall, W.D. Hoff, Water Transport in Brick, Stone and Concrete (Taylor & Francis, UK, 2011)

    Book  Google Scholar 

  2. E.U. Schlünder, Drying Technol. 22, 1517–1532 (2004)

    Article  Google Scholar 

  3. G.W. Scherer, J. Am. Ceram. Soc. 73, 3–14 (1990)

    Article  Google Scholar 

  4. D. Or, P. Lehmann, E. Shahraeeni, N. Shokri, Vadose Zone J. 12 (2013)

  5. P. Faure, P. Coussot, Phys. Rev. E 82, 036303 (2010)

    Article  ADS  Google Scholar 

  6. E. Keita, P. Faure, S. Rodts, P. Coussot, Phys. Rev. E 87, 062303 (2013)

    Article  ADS  Google Scholar 

  7. S. Merz, A. Pohlmeier, J. Vanderborght, D. van Dusschoten, H. Vereecken, Water Resour. Res. 50, 5184–5195 (2014)

    Article  ADS  Google Scholar 

  8. L.D. Hall, M.H. Gao Amin, E. Dougherty, M. Sanda, J. Votrubova, K.S. Richards, R.J. Chorley, M. Cislerova, Geoderma 80, 431–448 (1997)

    Article  Google Scholar 

  9. S. Haber-Pohlmeier, S. Stapf, A. Pohlmeier, Appl. Magn. Reson. 45, 1099–1115 (2014)

    Article  Google Scholar 

  10. L.R. Stingaciu, A. Pohlmeier, P. Blümler, L. Weihermüller, D. van Dusschoten, S. Stapf, H. Vereecken, Water Resour. Res. 45, W08412 (2009)

    Article  ADS  Google Scholar 

  11. M.H.G. Amin, R.J. Chorley, K.S. Richards, L.D. Hall, T.A. Carpenter, M. Cislerova, T. Vogel, Hydrol. Process. 11, 471–483 (1997)

    Article  ADS  Google Scholar 

  12. F. Jaeger, S. Bowe, H. Van As, G.E. Schaumann, Eur. J. Soil Sci. 60, 1052–1064 (2009)

    Article  Google Scholar 

  13. C.E. Muir, B.J. Balcom, Magn. Reson. Chem. 51, 321–327 (2013)

    Article  Google Scholar 

  14. K.J. Dunn, D.J. Bergman, G.A. LaTorraca, Nuclear Magnetic Resonance: Petrophysical and Logging Applications (Elsevier, Amsterdam, 2002)

    Google Scholar 

  15. R.L. Kleinberg, in Experimental Methods in the Physical Sciences, ed. by W. Pozen (Academic Press, 1999), pp. 337–385

  16. E.L. Hahn, Phys. Rev. 80, 580–594 (1950)

    Article  ADS  MATH  Google Scholar 

  17. S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 688–691 (1958)

    Article  ADS  Google Scholar 

  18. A.E. Pomerantz, P. Tilke, Y.-Q. Song, J. Magn. Reson. 193, 243–250 (2008)

    Article  ADS  Google Scholar 

  19. J. Mitchell, T.C. Chandrasekera, L.F. Gladden, J. Chem. Phys. 132, 244705 (2010)

    Article  ADS  Google Scholar 

  20. C.T.P. Chang, A.T. Watson, C.M. Edwards, in Experimental Methods in the Physical Sciences, ed. by W. Pozen (Academic Press, 1999), pp. 387–423

  21. P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Clarendon Press, Oxford, 1993)

    Google Scholar 

  22. M. Bernstein, K. King, X. Zhou, Handbook of MRI Pulse Sequences (Academic Press, Burlington, 2004)

    Google Scholar 

  23. D.G. Nishimura, Principles of Magnetic Resonance Imaging (Stanford University, Stanford, 1996)

    Google Scholar 

  24. O.V. Petrov, G. Ersland, B.J. Balcom, J. Magn. Reson. 209, 39–46 (2011)

    Article  ADS  Google Scholar 

  25. L. Li, H. Han, B.J. Balcom, J. Magn. Reson. 198, 252–260 (2009)

    Article  ADS  Google Scholar 

  26. T.A. Gallagher, A.J. Nemeth, L. Hacein-Bey, Am. J. Roentgenol. 190, 1396–1405 (2008)

    Article  Google Scholar 

  27. F. Marica, F.G. Goora, B.J. Balcom, J. Magn. Reson. 240, 61–66 (2014)

    Article  ADS  Google Scholar 

  28. I.V. Mastikhin, B.J. Balcom, Centric SPRITE MRI of Biomaterials with Short T2*. MRI of Tissues with Short T2s or T2*s (Wiley, Chichester, 2012)

    Google Scholar 

  29. C.E. Muir, B.J. Balcom, in Annual Reports on NMR Spectroscopy, ed. by A.W. Graham (Academic Press, 2012), pp. 81–113

  30. K.C. Cameron, G.D. Buchan, Encyclopedia of Soil Science, 2nd edn. (CRC Press, Boca Raton, 2005)

    Google Scholar 

  31. A.S. Rogowski, Water Resour. Res. 7, 1575–1582 (1971)

    Article  ADS  Google Scholar 

  32. A.E. Marble, I.V. Mastikhin, B.G. Colpitts, B.J. Balcom, J. Magn. Reson. 186, 100–104 (2007)

    Article  ADS  Google Scholar 

  33. J.C. García-Naranjo, I.V. Mastikhin, B.G. Colpitts, B.J. Balcom, J. Magn. Reson. 207, 337–344 (2010)

    Article  ADS  Google Scholar 

  34. A.B. Williams, F.J. Taylor, Electronic Filter Design Handbook, 3rd edn. (McGraw-Hill Inc, USA, 1995)

    Google Scholar 

  35. O. Mohnke, Water Resour. Res. 50, 5309–5321 (2014)

    Article  ADS  Google Scholar 

  36. R.L. Kleinberg, Magn. Reson. Imaging 12, 271–274 (1994)

    Article  Google Scholar 

  37. R.L. Kleinberg, S.A. Farooqui, M.A. Horsfield, J. Colloid Interface Sci. 158, 195–198 (1993)

    Article  Google Scholar 

  38. K.E. Washburn, C.D. Eccles, P.T. Callaghan, J. Magn. Reson. 194, 33–40 (2008)

    Article  ADS  Google Scholar 

  39. J. Mitchell, T.C. Chandrasekera, L.F. Gladden, J. Chem. Phys. 139, 074205 (2013)

    Article  ADS  Google Scholar 

  40. E. Pusey, R.B. Lufkin, R.K. Brown, M.A. Solomon, D.D. Stark, R.W. Tarr, W.N. Hanafee, RadioGraphics 6, 891–911 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support by Deutsche Forschungsgesellschaft (DFG, SFB/TR 32 “Patterns in Soil–Vegetation–Atmosphere Systems: Monitoring, Modelling and Data Assimilation”). B. Balcom thanks NSERC of Canada for a Discovery Grant and the Canada Chairs program for a research chair in MRI of materials. S. Merz thanks Josée Owen from the Potato Research Centre in Fredericton (New Brunswick, Canada) for providing the soil material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Merz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merz, S., Pohlmeier, A., Balcom, B.J. et al. Drying of a Natural Soil Under Evaporative Conditions: A Comparison of Different Magnetic Resonance Methods. Appl Magn Reson 47, 121–138 (2016). https://doi.org/10.1007/s00723-015-0736-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0736-6

Keywords

Navigation