Skip to main content
Log in

Direct-Push-Technologien – Effiziente Untersuchungsmethoden für die Untergrunderkundung

Direct Push technologies—an efficient investigation method for subsurface characterization

  • Übersichtsbeitrag
  • Published:
Grundwasser Aims and scope Submit manuscript

Zusammenfassung

Vor etwa zehn Jahren haben die sogenannten Direct-Push-Technologien in Deutschland als „neue“ Technik für die Erkundung des Untergrundes Einzug gehalten und werden seither vielfach in den verschiedensten Bereichen der Untergrunderkundung eingesetzt. Allerdings werden ihre Anwendungsmöglichkeiten noch zum Teil recht konträr diskutiert und eine gewisse Skepsis ist auch nach mehr als zehn Jahren Erfahrung in Deutschland geblieben. Bei genauerer Betrachtung der Anwendungsfelder dieser Technologie fällt auf, dass die Vielfältigkeit der Technologie zwar in einem zunehmenden Maße genutzt wird, in der „Praxis“ aber noch nicht vollständig angekommen zu sein scheint. Und dies obwohl die Technologie in ihrer einfachsten Art – nämlich in Form von Rammkernsondierungen – standardmäßig eingesetzt, aber das Potenzial der Methode nicht genutzt wird. Um diesem Defizit zu begegnen, zielt dieser Beitrag darauf ab, einen umfassenden Überblick über den Stand der Direct-Push-Technologie und deren vielfältigen Anwendungsmöglichkeiten und -limitierungen zu geben.

Abstract

About ten years ago, Direct Push technologies were introduced in Germany as a “new” tool for subsurface characterization. Ever since, they have been frequently used in various fields of site investigations. However, despite over ten years of experience, their application potential is often perceived with scepticism. Closer consideration of the range of applications of this method shows that the technology is indeed being increasingly used, even though it does not seem to be completely accepted in the “consulting world”. This is surprising as Direct Push is already used in Germany in its simplest form—i.e. by percussion coring—on a routine basis. Nonetheless, the full potential of Direct Push has not yet been exploited. This article aims to provide a comprehensive overview on the state of the art of this technology and its various application potentials and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1

Literatur

  • Aboumatar, H., Goble, G.G.: SPT dynamic analysis and measurements. J. Geotech. Geoenviron. Eng. 123(10), 921–928 (1997)

    Article  Google Scholar 

  • Akca, N.: Correlation of SPT-CPT data from the United Arab Emirates. Eng. Geol. 67(3–4), 219–231 (2003)

    Article  Google Scholar 

  • Anastasiadis, P., Xefteris, A., Latinopoulos, P.: Monitoring a contaminant unconfined aquifer with a multilevel sampler. Fresenius Environ. Bull. 12(10), 1158–1166 (2003)

    Google Scholar 

  • Anderson, N., Thitimakorn, T., Ismail, A., Hoffman, D.: A comparison of four geophysical methods for determining the shear wave velocity of soils. Environ. Sci. Technol. 13(1), 11–23 (2007)

    Google Scholar 

  • Ardalan, H., Eslami, A., Nariman-Zadeh, N.: Piles shaft capacity from Cpt and Cptu data by polynomial neural networks and genetic algorithms. Comput. Geotech. 36(4), 616–625 (2009)

    Article  Google Scholar 

  • Asten, M.W., Stephenson, W.R., Davenport, P.N.: Shear-wave velocity profile for holocene sediments measured from microtremor array studies. Scpt, and seismic refraction. J. Environ. Eng. Geophys. 10(3), 235–242 (2005)

    Article  Google Scholar 

  • Baermann, A., Bahrig, B., Bücherl, K., Klaas, N.: ITVA-Vergleichsprobennahme – ein Ringversuch für Rammkernsondierungen. Altlasten-Spektrum 2, 65–69 (2005)

    Google Scholar 

  • Banikowski, J.E., Kaczmar, S.W., Hunt, J.F.: Field validation of helium as a tracer gas during soil vapor sample collection. Soil Sediment Contam. 18(3), 243–263 (2009)

    Article  Google Scholar 

  • Beck, F.P., Clark, P.J., Puls, R.W.: Location and characterization of subsurface anomalies using a soil conductivity probe. Ground Water Monit. Remediat. 20(2), 55–59 (2000)

    Article  Google Scholar 

  • Borden, R.C.: Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation. J. Contam. Hydrol. 94(1–2), 1–12 (2007)

    Article  Google Scholar 

  • Bray, J.D., Sancio, R.B., Durgunoglu, T., Onalp, A., Youd, T.L., Stewart, J.P., Seed, R.B., Cetin, O.K., Bol, E., Baturay, M.B., Christensen, C., Karadayilar, T.: Subsurface characterization at ground failure sites in Adapazari, Turkey. J. Geotech. Geoenviron. Eng. 130(7), 673–685 (2004)

    Article  Google Scholar 

  • Breul, P., Gourves, R.: In field soil characterization: approach based on texture image analysis. J. Geotech. Geoenviron. Eng. 132(1), 102–107 (2006)

    Article  Google Scholar 

  • Bronders, J., Van Keer, I., Touchant, K., Vanermen, G., Wilczek, D.: Application of the membrane interphase probe (Mip): an evaluation. J. Soils Sediments 9(1), 74–82 (2009)

    Article  Google Scholar 

  • Butler, J.J.: The Design, Performance, and Analysis of Slug Tests. CRC Press, Boca Raton (1997)

    Google Scholar 

  • Butler, J.J., Healey, J.M., McCall, G.W., Garnett, E.J., Loheide, S.P.: Hydraulic tests with direct-push equipment. Ground Water 40(1), 25–36 (2002)

    Article  Google Scholar 

  • Butler, J.J., Dietrich, P., Wittig, V., Christy, T.: Characterizing hydraulic conductivity with the direct-push permeameter. Ground Water 45(4), 409–419 (2007)

    Article  Google Scholar 

  • Campanella, R.G., Weemees, I.: Development and use of an electrical-resistivity cone for groundwater contamination studies. Can. Geotech. J. 27(5), 557–567 (1990)

    Article  Google Scholar 

  • Cetin, K.O., Ozan, C.: Cpt-based probabilistic soil characterization and classification. J. Geotech. Geoenviron. Eng. 135(1), 84–107 (2009)

    Article  Google Scholar 

  • Charette, M.A., Allen, M.C.: Precision ground water sampling in coastal aquifers using a direct-push, shielded-screen well-point system. Ground Water Monit. Remediat. 26(2), 87–93 (2006)

    Article  Google Scholar 

  • Chen, X.H.: Hydrologic connections of a stream-aquifer-vegetation zone in south-central platte river Valley, Nebraska. J. Hydrol. 333(2–4), 554–568 (2007)

    Article  Google Scholar 

  • Chen, X.H., Burbach, M., Cheng, C.: Electrical and hydraulic vertical variability in channel sediments and its effects on streamflow depletion due to groundwater extraction. J. Hydrol. 352(3–4), 250–266 (2008)

    Article  Google Scholar 

  • Chiang, C.Y., Loos, K.R., Klopp, R.A.: Field determination of geological chemical-properties of an aquifer by cone penetrometry and headspace analysis. Ground Water 30(3), 428–436 (1992)

    Article  Google Scholar 

  • Cho, J.S., Wilson, J.T., Beck, F.P.: Measuring vertical profiles of hydraulic conductivity with in situ direct-push methods. J. Environ. Eng. 126(8), 775–777 (2000)

    Article  Google Scholar 

  • Conant, B., Cherry, J.A., Gillham, R.W.: A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions. J. Contam. Hydrol. 73(1–4), 249–279 (2004)

    Article  Google Scholar 

  • Costanza, J., Davis, W.M.: Rapid detection of volatile organic compounds in the subsurface by membrane introduction into a direct sampling ion-trap mass spectrometer. Field Anal. Chem. Technol. 4(5), 246–254 (2000)

    Article  Google Scholar 

  • D’Affonseca, F.M., Blum, P., Finkel, M., Melzer, R., Grathwohl, P.: Field scale characterization and modeling of contaminant release from a coal tar source zone. J. Contam. Hydrol. 102(1–2), 120–139 (2008)

    Article  Google Scholar 

  • Davis, W.M., Cespedes, E.R., Lee, L.T., Powell, J.F., Goodson, R.A.: Rapid delineation of subsurface petroleum contamination using the site characterization and analysis penetrometer system. Environ. Geol. 29(3–4), 228–237 (1997)

    Google Scholar 

  • Davis, W.M., Wise, M.B., Furey, J.S., Thompson, C.V.: Rapid detection of volatile organic compounds in groundwater by in situ purge and direct-sampling ion-trap mass spectrometry. Field Anal. Chem. Technol. 2(2), 89–96 (1998)

    Article  Google Scholar 

  • Dehnert, J., Leven, C., Trabitzsch, R., Weiss, H.: Determination of high-resolution concentration profiles of nitrate in groundwater by means of direct push soundings. Grundwasser 15(4), 221–230 (2010)

    Article  Google Scholar 

  • DeJong, J.T., Frost, J.D., Cargill, P.E.: Effect of surface texturing on cpt friction sleeve measurements. J. Geotech. Geoenviron. Eng. 127(2), 158–168 (2001)

    Article  Google Scholar 

  • Diem, S., Vogt, T., Hoehn, E.: Spatial characterization of hydraulic conductivity in alluvial gravel-and-sand aquifers: a comparison of methods. Grundwasser 15(4), 241–251 (2010)

    Article  Google Scholar 

  • Dietrich, P., Leven, C.: Direct Push-Technologies. Groundwater Geophysics. A Tool for Hydrogeology, pp. 321–340. Springer, Berlin (2006)

    Google Scholar 

  • Dietrich, P., Butler, J.J., Faiss, K.: A rapid method for hydraulic profiling in unconsolidated formations. Ground Water 46(2), 323–328 (2008)

    Article  Google Scholar 

  • Deutsches Institut für Normung: DIN4021 – Aufschluss durch Schürfe und Bohrungen sowie Entnahme von Proben (1990)

  • Deutsches Institut für Normung: DIN22476-2 – Geotechnische Erkundung und Untersuchung – Felduntersuchungen – Teil 2: Rammsondierungen (ISO 22476-2:2005); Deutsche Fassung En Iso 22476-2:2005 (2005)

  • Deutsches Institut für Normung: DIN22476-1 – Geotechnische Erkundung und Untersuchung – Felduntersuchungen – Teil 1: Drucksondierungen mit elektrischen Messwertaufnehmern und Messeinrichtungen für den Porenwasserdruck (Iso/Dis 22476-1:2009); Deutsche Fassung (2009)

  • Douglas, B.J., Olsen, R.S.: Soil Classification Using Electric Cone Penetrometer. Cone Penetration and Experience (ASCE National Convention), pp. 209–227. American Society of Engineers (ASCE), St. Louis (1981)

    Google Scholar 

  • Edelman, S.H., Holguin, A.R.: Cone penetrometer testing for characterization and sampling of soil and groundwater. Sampling Environ. Media 1282, 192–206 (1996)

    Article  Google Scholar 

  • Edge, R.W., Cordry, K.: The hydropunch—an insitu sampling tool for collecting ground-water from unconsolidated sediments. Ground Water Monit. Remediat. 9(3), 177–183 (1989)

    Article  Google Scholar 

  • Einarson, M.D., Cherry, J.A.: A new multilevel ground water monitoring system using multichannel tubing. Ground Water Monit. Remediat. 22(4), 52–65 (2002)

    Article  Google Scholar 

  • Elgun, S.N., van Isselt, C.A.H.M., Jansch, R.: Safely uncovering deep foundations and services with magnetometer cone. In: 2nd International Symposium on Cone Penetration Testing. Huntington Beach, California, USA, International Society for Soil Mechanics and Geotechnical Engineering, Paper No. 1–02 (2010)

  • Ellis, D.V., Schweitzer, J.S., Ullo, J.J.: Nuclear techniques for subsurface geology. Annu. Rev. Nucl. Part. Sci. 37, 213–241 (1987)

    Article  Google Scholar 

  • Elsworth, D., Lee, D.S.: Permeability determination from on-the-fly piezocone sounding. J. Geotech. Geoenviron. Eng. 131(5), 643–653 (2005)

    Article  Google Scholar 

  • Elsworth, D., Lee, D.S.: Limits in determining permeability from on-the-fly Ucpt sounding. Geotechnique 57(8), 679–685 (2007)

    Article  Google Scholar 

  • Eslami, A., Fellenius, B.H.: CPT and CPTu data for soil profile interpretation: review of methods and a proposed new approach. Iran. J. Sci. Technol., Trans. A, Sci. 28(B1), 69–86 (2004)

    Google Scholar 

  • Geoprobe-Systems: Probing times. Salina, Kansas (Spring) 14–15 (2010)

  • Gilkerson, R.C.: Groundwater collection takes a different twist—direct-push technology used in combination with mobile laboratories is an option for groundwater collection and sampling. Pollut. Eng. 27(1), 46–48 (1995)

    Google Scholar 

  • Grandel, S., Dahmke, A.: Leitfaden Natürliche Schadstoffminderung bei LCKW-kontaminierten Standorten: Methoden, Empfehlungen und Hinweise zur Untersuchung und Beurteilung. BMBF-Förderschwerpunkt „Kontrollierter natürlicher Rückhalt und Abbau von Schadstoffen bei der Sanierung kontaminierter Grundwässer und Böden“ (KORA); [KORA-Themenverbund 3 – chemische Industrie, Metallverarbeitung], S. 364. Kiel (2008)

  • Griffin, T.W., Watson, K.W.: A comparison of field techniques for confirming dense nonaqueous phase liquids. Ground Water Monit. Remediat. 22(2), 48–59 (2002)

    Article  Google Scholar 

  • Grundl, T.J., Aldstadt, J.H., Harb, J.G., Germain, R.W.S., Schweitzer, R.C.: Demonstration of a method for the direct determination of polycyclic aromatic hydrocarbons in submerged sediments. Environ. Sci. Technol. 37(6), 1189–1197 (2003)

    Article  Google Scholar 

  • Hannappel, S., Braun, P.: Conception and realization of a groundwater monitoring by direct push in Northern Brandenburg. Grundwasser 15(3), 191–201 (2010)

    Article  Google Scholar 

  • Hart, S.J., Chen, Y.M., Kenny, J.E., Lien, B.K., Best, T.W.: Field demonstration of a multichannel fiber-optic laser-induced fluorescence system in a cone penetrometer vehicle. Field Anal. Chem. Technol. 1(6), 343–355 (1997)

    Article  Google Scholar 

  • Hawthorne, S.B., St Germain, R.W., Azzolina, N.A.: Laser-induced fluorescence coupled with solid-phase microextraction for in situ determination of pahs in sediment pore water. Environ. Sci. Technol. 42(21), 8021–8026 (2008)

    Article  Google Scholar 

  • Herold, M., Ptak, T., Grathwohl, P.: A comparison of mass flow rate estimates based on point scale and integral measurements. Grundwasser 13(4), 231–240 (2008)

    Article  Google Scholar 

  • Herold, M., Ptak, T., Bayer-Raich, M., Wendel, T., Grathwohl, P.: Integral quantification of contaminant mass flow rates in a contaminated aquifer: conditioning of the numerical inversion of concentration-time series. J. Contam. Hydrol. 106(1–2), 29–38 (2009)

    Article  Google Scholar 

  • Hettiarachchi, H., Brown, T.: Use of SPT blow counts to estimate shear strength properties of soils: energy balance approach. J. Geotech. Geoenviron. Eng. 135(6), 830–834 (2009)

    Article  Google Scholar 

  • Hilhorst, M.A.: A pore water conductivity sensor. Soil Sci. Soc. Am. J. 64(6), 1922–1925 (2000)

    Article  Google Scholar 

  • Hinsby, K., Bjerg, P.L., Andersen, L.J., Skov, B., Clausen, E.V.: A mini slug test method for determination of a local hydraulic conductivity of an unconfined sandy aquifer. J. Hydrol. 136(1–4), 87–106 (1992)

    Article  Google Scholar 

  • HLUG: Altlastenannual 2008 – Hessisches Landesamt für Umwelt und Geologie (2009)

  • Hoffmann, S., Beilecke, T., Werban, U., Leven, C., Engeser, B., Polom, U.: Joint application of shear wave seismics and direct push methods in the site investigation of an urban aquifer. Grundwasser 13(2), 78–90 (2008)

    Article  Google Scholar 

  • Hofmann, T., Darsow, A., Groning, M., Aggarwal, P., Suckow, A.: Direct-push profiling of isotopic and hydrochemical vertical gradients. J. Hydrol. 385(1–4), 84–94 (2010)

    Article  Google Scholar 

  • Jackson, R.E., Meinardus, H.W.: Discussion of a comparison of field techniques for confirming dense nonaqueous phase liquids. Ground Water Monit. Remediat. 23(2), 28 (2003)

    Article  Google Scholar 

  • Jaume, S.C.: Shear wave velocity profiles via seismic cone penetration test and refraction microtremor techniques at anss strong motion sites in Charleston. Seismol. Res. Lett. 77(6), 771–779 (2006)

    Article  Google Scholar 

  • Jefferies, M.G., Davies, M.P.: Soil classification by the cone penetration test—discussion. Can. Geotech. J. 28(1), 173–176 (1991)

    Article  Google Scholar 

  • Johnson, A.N., Boer, B.R., Woessner, W.W., Stanford, J.A., Poole, G.C., Thomas, S.A., O’Daniel, S.J.: Evaluation of an inexpensive small-diameter temperature logger for documenting ground water-river interactions. Ground Water Monit. Remediat. 25(4), 68–74 (2005)

    Article  Google Scholar 

  • Kalbus, E., Reinstorf, F., Schirmer, M.: Measuring methods for groundwater—surface water interactions: a review. Hydrol. Earth Syst. Sci. 10(6), 873–887 (2006)

    Article  Google Scholar 

  • Kalbus, E., Schmidt, C., Reinstorf, F., Krieg, R., Schirmer, M.: How streambed temperatures can contribute to the determination of aquifer heterogeneity. Grundwasser 13(2), 91–100 (2008)

    Article  Google Scholar 

  • Kim, C.G., Lockington, D., Clarke, W.P., Kim, C.W.: Preliminary determination of pollutants plume in groundwater at hazardous solid waste disposal site by employing cpt and rig. Environ. Sci. Technol. 21(1), 17–30 (2000)

    Article  Google Scholar 

  • Kim, Y.S., Oh, M.H., Park, J.: Laboratory study on the dielectric properties of contaminated soil using CPT deployed probe. Geosci. J. 11(2), 121–130 (2007)

    Article  Google Scholar 

  • Köber, R., Hornbruch, G., Leven, C., Tischer, L., Grossmann, J., Dietrich, P., Weiss, H., Dahmke, A.: Evaluation of combined direct-push methods used for aquifer model generation. Ground Water 47(4), 536–546 (2009)

    Article  Google Scholar 

  • Kodesova, R., Gribb, M.M., Simunek, J.: Estimating soil hydraulic properties from transient cone permeameter data. Soil Sci. 163(6), 436–453 (1998)

    Article  Google Scholar 

  • Kögler, S.: Direct-Push-basierte Erkundungstechniken – Stand der Technik und Evaluierung der Methoden. Diplomarbeit, Fachhochschule Weihenstephan, Abteilung Triesdorf (2009)

  • Kraemer, C.A., Penn, W.E., Busa, M.D.: Use of the hydropunch for groundwater plume delineation: a case study. Sampl. Environ. Media 1282, 179–191 (1996)

    Article  Google Scholar 

  • Kram, M.L., Keller, A.A.: Complex NAPL site characterization using fluorescence, Part 2. Analysis of soil matrix effects on the excitation/emission matrix. Soil Sediment Contam. 13(2), 119–134 (2004a)

    Article  Google Scholar 

  • Kram, M.L., Keller, A.A.: Complex NAPL site characterization using fluorescence, Part 3. Detection capabilities for specific excitation sources. Soil Sediment Contam. 13(2), 135–148 (2004b)

    Article  Google Scholar 

  • Kram, M.L., Keller, A.A., Rossabi, J., Everett, L.G.: DNAPL characterization methods and approaches, Part 1. Performance comparisons. Ground Water Monit. Remediat. 21(4), 109–123 (2001)

    Article  Google Scholar 

  • Kram, M.L., Keller, A.A., Rossabi, J., Everett, L.G.: DNAPL characterization methods and approaches, Part 2. Cost comparisons. Ground Water Monit. Remediat. 22(1), 46–61 (2002)

    Article  Google Scholar 

  • Kram, M.L., Keller, A.A., Massick, S.M., Laverman, L.E.: Complex NAPL site characterization using fluorescence, Part 1. Selection of excitation wavelength based on NAPL composition. Soil Sediment Contam. 13(2), 103–118 (2004)

    Article  Google Scholar 

  • Kurup, P.U.: Novel technologies for sniffing soil and ground water contaminants. Curr. Sci. 97(8), 1212–1219 (2009)

    Google Scholar 

  • Kurup, P.U., Issac, B., Griffin, E.P.: Electronic nose-membrane interface probe for geoenvironmental site characterization. J. Geotech. Geoenviron. Eng. 132(9), 1133–1142 (2006)

    Article  Google Scholar 

  • LeBlanc, A.M., Fortier, R., Cosma, C., Allard, M.: Tomographic imaging of permafrost using three-component seismic cone-penetration test. Geophysics 71(5), H55–H65 (2006)

    Article  Google Scholar 

  • Lee, D.S., Elsworth, D., Hryciw, R.: Hydraulic conductivity measurement from on-the-fly ucpt sounding and from viscpt. J. Geotech. Geoenviron. Eng. 134(12), 1720–1729 (2008)

    Article  Google Scholar 

  • Lessoff, S.C., Schneidewind, U., Leven, C., Blum, P., Dietrich, P., Dagan, G.: Spatial characterization of the hydraulic conductivity using direct-push injection logging. Water Resour. Res. 46 (2010). doi:10.1029/2009WR008949

  • Leven, C., Dietrich, P.: Studie über die Einsetzbarkeit der Direct Push-Technologie am Standort „Fischer Deponie Umfeld“ (Unpublished report), S. 46. Helmholtz-Zentrum für Umweltforschung-UFZ, Leipzig (2006)

  • Leven, C., Weiß, H., Koschitzky, H.P., Blum, P., Ptak, T., Dietrich, P.: Direct-Push-Verfahren. Stuttgart E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart (2010)

    Google Scholar 

  • Liu, G.S., Bohling, G.C., Butler, J.J.: Simulation assessment of the direct-push permeameter for characterizing vertical variations in hydraulic conductivity. Water Resour. Res. 44(2) (2008). doi:10.1029/2007WR006078

  • Liu, G.S., Butler, J.J., Bohling, G.C., Reboulet, E., Knobbe, S., Hyndman, D.W.: A new method for high-resolution characterization of hydraulic conductivity. Water Resources Research 45 (2009). doi:10.1029/2009WR008319

  • LUGV: Qualitätssicherungsmaßnahmen bei innovativen direkten/indirekten Probennahmeverfahren für Boden, Grund-, Sickerwasser, Schadstoffphase und Bodenluft im Rahmen der Altlastenbearbeitung. Altlastenbearbeitung im Land Brandenburg – Fachinformation des Landesamtes für Umwelt, Gesundheit und Verbraucherschutz Nr. 18. Landesamtes für Umwelt Gesundheit und Verbraucherschutz, Potsdam (2010)

  • Lunne, T., Robertson, P.K., Powell, J.J.: Cone Penetration Testing in Geotechnical Practice. Spon Press, New York (1997)

    Google Scholar 

  • Lutenegger, A.J., Degroot, D.J.: Techniques for sealing cone penetrometer holes. Can. Geotech. J. 32(5), 880–891 (1995)

    Article  Google Scholar 

  • Martac, E., Zamfirescu, D., Teutsch, G., Blessing, M., Schmidt, T., Preuß, E., Tschauder, G., Meyer, J., Peter, G.: Altstandort chemische Reinigung Rosengarten-Ehestorf – Felduntersuchungen zur Abschätzung des Natural-attenuation-Potenzials. TerraTech 11–12, 9–11 (2007)

    Google Scholar 

  • Mayne, P.W.: Cone penetration testing. A synthesis of highway practice. Transportation Research Board, National Cooperative Research Program, NCHRP Synthesis 368, Washington, DC, USA (2007)

  • McAndrews, B., Heinze, K., DiGuiseppi, W.: Defining TCE plume source areas using the membrane interface probe (MIP). Soil Sediment Contam. 12(6), 799–813 (2003)

    Article  Google Scholar 

  • McCall, W., Nielsen, D.M., Farrington, S., Christy, T.M.: Use of Direct-Push Technologies in Environmental Site Characterization and Ground-Water Monitoring. Practical Handbook of Environmental Site Characterization and Ground-Water Monitoring. CRS Press, Boca Raton (2006)

    Google Scholar 

  • McCall, W., Christy, T.M., Christopherson, T., Issacs, H.: Application of direct push methods to investigate uranium distribution in an alluvial aquifer. Ground Water Monit. Remediat. 29(4), 65–76 (2009)

    Article  Google Scholar 

  • Michels, J., Stuhrmann, M., Frey, C., Koschitzky, H.-P.: Handlungsempfehlungen mit Methodensammlung: Natürliche Schadstoffminderung bei der Sanierung von Altlasten; Bewertung und Anwendung, Rechtliche Aspekte, Wirtschaftlichkeit, Akzeptanz; Projektübergreifende Begleitung des BMBF-Förderschwerpunktes KORA. DECHEMA, Frankfurt, M. (2008)

    Google Scholar 

  • Miles, B., Kalbacher, T., Kolditz, O., Chen, C., Gronewold, J., Wang, W., Peter, A.: Development and parameterisation of a complex hydrogeological model based on high-resolution direct-push data. Environ. Geol. 52(7), 1399–1412 (2007)

    Article  Google Scholar 

  • Molz, F.J., Morin, R.H., Hess, A.E., Melville, J.G., Guven, O.: The impeller meter for measuring aquifer permeability variations—evaluation and comparison with other tests. Water Resour. Res. 25(7), 1677–1683 (1989)

    Article  Google Scholar 

  • Mondelli, G., Giacheti, H.L., Boscov, M.E.G., Elis, V.R., Hamada, J.: Geoenvironmental site investigation using different techniques in a municipal solid waste disposal site in Brazil. Environ. Geol. 52(5), 871–887 (2007)

    Article  Google Scholar 

  • Mosier-Boss, P.A., Lieberman, S.H.: Detection of lead derived from automotive scrap residue using a direct push fiber-optic laser-induced breakdown spectroscopy metal sensor. Appl. Spectrosc. 59(12), 1445–1456 (2005)

    Article  Google Scholar 

  • Mosier-Boss, P.A., Lieberman, S.H., Theriault, G.A.: Field demonstrations of a direct push FO-LIBS metal sensor. Environ. Sci. Technol. 36(18), 3968–3976 (2002)

    Article  Google Scholar 

  • Müller, M., Mohnke, O., Schmalholz, J., Yaramanci, U.: Moisture assessment with small-scale geophysics-the interurban project. Near Surf. Geophys. 1(4), 173–181 (2003)

    Google Scholar 

  • Neuhaus, M.: Spatial in situ delineation of soil and groundwater contamination with environmental CPT. In: Breh, W., Gottlieb, J., Hötzl, H., et al. (eds.) Field Screening 2001—Second International Conference on Strategies and Techniques for Investigation and Monitoring of Contaminated Sites, pp. 71–78. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  • Noce, T.E., Holzer, T.L.: CPT-Hole closure. Ground Water Monit. Remediat. 23(1), 93–96 (2003)

    Article  Google Scholar 

  • Owuama, C.O.: Semi-empirical method interpretation of cone penetration test (CPT) data. Discov. Innov. 13(3–4), 213–226 (2001)

    Google Scholar 

  • Paasche, H., Werban, U., Dietrich, P.: Near-surface seismic traveltime tomography using a direct-push source and surface-planted geophones. Geophysics 74(4), G17–G25 (2009)

    Article  Google Scholar 

  • Parez, L., Fauriel, R.: Le piezocone ameliorations apportees a la reconnaissance de sols. Rev. Fr. Géotech. (Paris) 44, 13–27 (1988)

    Google Scholar 

  • Pepper, J.W., Wright, A.O., Kenny, J.E.: In situ measurements of subsurface contaminants with a multi-channel laser-induced fluorescence system. Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 58(2), 317–331 (2002)

    Article  Google Scholar 

  • Peter, A., Vigelahn, L., Dietrich, P.: Frachtenbestimmung im Abstrom eines Schadensherds. Direct-Push-Technik zur Erkundung von Natural Attenuation. TerraTech 17(3), 12–14 (2008)

    Google Scholar 

  • Pitkin, S.E., Cherry, J.A., Ingleton, R.A., Broholm, M.: Field demonstrations using the waterloo ground water profiler. Ground Water Monit. Remediat. 19(2), 122–131 (1999)

    Article  Google Scholar 

  • PtWt + E: Kontrollierter natürlicher Rückhalt und Abbau von Schadstoffen bei der Sanierung kontaminierter Grundwäser und Böden – Eine Zusammenstellung der laufenden Projekte (2002)

  • Raschke, S.A., Hryciw, R.D.: Vision cone penetrometer for direct subsurface soil observation. J. Geotech. Geoenviron. Eng. 123(11), 1074–1076 (1997)

    Article  Google Scholar 

  • Rein, A., Popp, S., Zacharias, S., Leven, C., Bittens, M., Dietrich, P.: Comparison of approaches for the characterization of contamination at rural megasites. Environ. Earth Sci. 63(6), 1239–1249 (2011)

    Article  Google Scholar 

  • Robertson, P.K.: Soil classification using the cone penetration test. Can. Geotech. J. 27(1), 151–158 (1990)

    Article  Google Scholar 

  • Robertson, P.K.: Soil classification using the cone penetration test—reply. Can. Geotech. J. 28(1), 176–178 (1991)

    Article  Google Scholar 

  • Robertson, P.K.: Interpretation of cone penetration tests—a unified approach. Can. Geotech. J. 46(11), 1337–1355 (2009)

    Article  Google Scholar 

  • Robertson, P.K., Campanella, R.G., Gillespie, D., Greig, J.: Use of piezometer cone data. In: In Situ ’86: Use of in Situ Tests in Geotechnical Engineering (ASCE Specialty Conference), pp. 1263–1280. American Society of Engineers (ASCE), Blacksburg (1986)

    Google Scholar 

  • Robertson, P.K., Woeller, D.J., Finn, W.D.L.: Seismic cone penetration test for evaluating liquefaction potential under cyclic loading. Can. Geotech. J. 29(4), 686–695 (1992)

    Article  Google Scholar 

  • Rogers, J.D.: Subsurface exploration using the standard penetration test and the cone penetrometer test. Environ. Sci. Technol. 12(2), 161–179 (2006)

    Google Scholar 

  • Schechter, I.: Laser induced plasma spectroscopy. Rev. Anal. Chem. 16(3), 173–298 (1997)

    Article  Google Scholar 

  • Schulmeister, M.K., Butler, J.J., Healey, J.M., Zheng, L., Wysocki, D.A., McCall, G.W.: Direct-push electrical conductivity logging for high-resolution hydrostratigraphic characterization. Ground Water Monit. Remediat. 23(3), 52–62 (2003)

    Article  Google Scholar 

  • Schulmeister, M.K., Healey, J.M., Butler, J.J., McCall, G.W.: Direct-push geochemical profiling for assessment of inorganic chemical heterogeneity in aquifers. J. Contam. Hydrol. 69(3–4), 215–232 (2004)

    Article  Google Scholar 

  • Sellwood, S.M., Healey, J.M., Birk, S., Butler, J.J.: Direct-push hydrostratigraphic profiling: coupling electrical logging and slug tests. Ground Water 43(1), 19–29 (2005)

    Article  Google Scholar 

  • Semkiw, E.S., Barcelona, M.J.: Field study of enhanced tce reductive dechlorination by a full-scale whey PRB. Ground Water Monit. Remediat. 31(1), 68–78 (2011)

    Article  Google Scholar 

  • Shinn, J.D., Timian, D.A., Morey, R.M., Mitchell, G., Antle, C.L., Hull, R.: Development of a CPT deployed probe for in situ measurement of volumetric soil moisture content and electrical resistivity. Field Anal. Chem. Technol. 2(2), 103–109 (1998)

    Article  Google Scholar 

  • Siebenborn, G.: Kleinborhungen nach Din 4021 – eine (Ge-)Wissensfrage? bbr Fachmag. Brunnen- Leit. 56(5), 37–41 (2005)

    Google Scholar 

  • Smolley, M., Kappmeyer, J.C.: Cone penetrometer tests and hydropunch sampling—a screening technique for plume definition. Ground Water Monit. Remediat. 11(2), 101–106 (1991)

    Article  Google Scholar 

  • Tanaka, H., Tanaka, M., Suzuki, S., Sakagami, T.: Development of a new cone penetrometer and its application to great depths of pleistocene clays. Soil Found. 43(6), 51–61 (2003)

    Article  Google Scholar 

  • Tumay, M.T., Kurup, P.U.: Development of a continuous intrusion miniature cone penetration test system for subsurface explorations. Soil Found. 41(6), 129–138 (2001)

    Article  Google Scholar 

  • Ulusay, R., Tuncay, E., Hasancebi, N.: Liquefaction assessments by field-based methodologies: foundation soils at a dam site in Northeast Turkey. Bull. Eng. Geol. Environ. 66(3), 361–375 (2007)

    Article  Google Scholar 

  • US-EPA: Expedited Site Assessment Tools for Underground Storage Tank Sites: A Guide for Regulators. United States Environmental Protection Agency, Office of Underground Storage Tanks (1997)

  • Vogt, T., Schneider, P., Hahn-Woernle, L., Cirpka, O.A.: Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling. J. Hydrol. 380(1–2), 154–164 (2010)

    Article  Google Scholar 

  • Wabbels, D., Teutsch, G.: Leitfaden natürliche Schadstoffminderungsprozesse bei mineralölkontaminierten Standorten: Methoden, Empfehlungen und Hinweise zur Untersuchung und Beurteilung „Raffinerien, Tanklager, Kraftstoffe/Minaralöl, MTBE“ im Bmbf-Förderschwerpunkt „Kontrollierter natürlicher Rückhalt und Abbau von Schadstoffen bei der Sanierung kontaminierter Grunbdwässer und Böden“ (KORA), S. 221. Tübingen (2008)

  • Weiß, H., Ptak, T., Batereau, K., Busch, K.J., Flachowsky, J.: Innovative Mess- und Überwachungsmethoden (Grundwassermonitoring). E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart (2006)

    Google Scholar 

  • Werban, U., Leven, C., Reboulet, E., Leccese, M., Viotti, P., Dietrich, P.: Technologies for a fast characterization of subsurface structures—an example from the Milano-Rho site. Italian J. Eng. Geol. Environ. (Spec. Iss.) 1, 115–122 (2007)

    Google Scholar 

  • Werner, P.: Leitfaden „Natürliche Schadstoffminderung bei Teerölaltlasten“: Themenverbund 2 „Gaswerke, Kokereien, Teerverarbeitung, (Holz-)Imprägnierung“ im BMBF-Förderschwerpunkt „Kontrollierter natürlicher Rückhalt und Abbau von Schadstoffen bei der Sanierung kontaminierter Grundwässer und Böden“ (KORA); Dresden (2008)

  • Wyatt, D.E., Waddell, M.G., Sexton, G.B.: Geophysics and shallow faults in unconsolidated sediments. Ground Water 34(2), 326–334 (1996)

    Article  Google Scholar 

  • Zemo, D.A., Delfino, T.A., Gallinatti, J.D., Baker, V.A., Hilpert, L.R.: Field comparison of analytical results from discrete-depth ground-water samplers. Ground Water Monit. Remediat. 15(1), 133–141 (1995)

    Article  Google Scholar 

  • Zemo, D.A., Pierce, Y.G., Gallinatti, J.D.: Cone penetrometer testing and discrete-depth ground-water sampling techniques—a cost-effective method of site characterization in a multiple-aquifer setting. Ground Water Monit. Remediat. 14(4), 176–182 (1994)

    Article  Google Scholar 

  • Zhang, Q., Al-Nuaimy, W., Huang, Y.: Detection of deeply buried UXO using CPT magnetometers. IEEE Trans. Geosci. Remote Sens. 45(2), 410–417 (2007)

    Article  Google Scholar 

  • Zhang, Z.J., Tumay, M.T.: Simplification of soil classification charts derived from the cone penetration test. ASTM Geotech. Test. J. 19(2), 203–216 (1996)

    Google Scholar 

  • Zlotnik, V.A., Zurbuchen, B.R.: Estimation of hydraulic conductivity from borehole flowmeter tests considering head losses. J. Hydrol. 281(1–2), 115–128 (2003a)

    Article  Google Scholar 

  • Zlotnik, V.A., Zurbuchen, B.R.: Field study of hydraulic conductivity in a heterogeneous aquifer: comparison of single-borehole measurements using different instruments. Water Resour. Res. 39(4) (2003b) 1101 doi:10.1029/2002WR001415

  • Zlotnik, V.A., Burbach, M., Swinehart, J., Bennett, D., Fritz, S.C., Loope, D.B., Olaguera, F.: Using direct-push methods for aquifer characterization in dune-lake environments of the Nebraska sand hills. Environ. Sci. Technol. 13(3), 205–216 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Leven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leven, C., Weiß, H., Vienken, T. et al. Direct-Push-Technologien – Effiziente Untersuchungsmethoden für die Untergrunderkundung. Grundwasser 16, 221–234 (2011). https://doi.org/10.1007/s00767-011-0175-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00767-011-0175-8

Keywords

Navigation