Skip to main content

Advertisement

Log in

Systematic errors of mapping functions which are based on the VMF1 concept

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Precise global navigation satellite system (GNSS) positioning requires an accurate mapping function (MF) to model the tropospheric delay. To date, the most accurate MF is the Vienna mapping function 1 (VMF1). It utilizes data from a numerical weather model and therefore captures the short-term variability of the atmosphere. Still, the VMF1, or any other MF that is based on the VMF1 concept, is a parameterized mapping approach, and this means that it is tuned for specific elevation angles, station heights, and orbital altitudes. In this study, we analyze the systematic errors caused by such tuning on a global scale. We find that, in particular, the parameterization of the station height dependency is a major concern regarding the application in complex terrain or airborne applications. At this time, we do not provide an improved parameterized mapping approach to mitigate the systematic errors but instead we propose a (ultra-) rapid direct mapping approach, the so-called Potsdam mapping factors (PMFs). Since for any station–satellite link the ratio of the tropospheric delay in the slant and zenith direction is computed directly, the PMFs effectively eliminate the systematic errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Boehm J, Schuh H (2004) Vienna mapping functions in VLBI analyses. Geophys Res Lett 31:L01603. doi:10.1029/2003GLO18984

    Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006a) Global Mapping Function (GMF) a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304. doi:10.1029/2005GL025546

    Article  Google Scholar 

  • Boehm J, Werl B, Schuh H (2006b) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406. doi:10.1029/2005JB003629

    Article  Google Scholar 

  • Davis JL, Herring TA, Shapiro II, Rogers AE, Elgered G (1985) Geodesy by radio interferometry: effects of the atmospheric modelling errors on estimates of baseline length. Radio Sci. 20:1593–1607

    Article  Google Scholar 

  • Herring TA (1992) Modelling atmospheric delays in the analysis of space geodetic data. In: de Munck JC, Spoelstra TAT (eds) Proceedings of the symposium refraction of transatmospheric signals in geodesy. The Netherlands, The Hague, pp 157–164

  • Lagler K, Schindelegger M, Boehm J, Krasna H, Nilsson T (2013) GPT2: empirical slant delay model for radio space geodetic techniques. Geophys Res Lett 40. doi:10.1002/grl.50288

  • Marini JW (1972) Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Sci 7:223–231. doi:10.1029/RS007i002p00223

    Article  Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101:3227–3246. doi:10.1029/95JB03048

    Article  Google Scholar 

  • Niell AE (2001) Preliminary evaluation of atmospheric mapping functions based on numerical weather models. Phys Chem Earth 26:475–480

    Article  Google Scholar 

  • Nievinski FG, Santos M (2010) Ray-tracing options to mitigate the neutral atmosphere delay in GPS. Geomatica 64:191–207

    Google Scholar 

  • Rocken C, Sokolovskiy S, Johnson JM, Hunt D (2001) Improved mapping of tropospheric delays. J Atmos Oceanic Technol 18:1205–1213

    Article  Google Scholar 

  • Tesmer V, Boehm J, Heinkelman R, Schuh H (2007) Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI. J Geodesy 81:409–421. doi:10.1007/s00190-006-0126-9

    Article  Google Scholar 

  • Urquhart L, Nievinski FG, Santos MC (2012) Ray-traced slant factors for mitigating the tropospheric delay at the observation level. J Geodesy 86:149–160. doi:10.1007/s00190-011-0503-x

    Article  Google Scholar 

  • Urquhart L, Nievinski FG, Santos MC (2013) Assessment of troposphere mapping functions using three-dimensional ray-tracing. GPS Solut. doi:10.1007/s10291-013-0334-8

    Google Scholar 

  • Vey S, Dietrich R, Fritsche M, Rülke A, Rotacher M, Steigenberger P (2006) Influence of mapping functions parameters on global GPS network analysis: comparison between NMF and IMF. Geophys Res Lett 33:L01814. doi:10.1029/2005GL024361

    Article  Google Scholar 

  • Zus F, Bender M, Deng Z, Dick G, Heise S, Shang-Guan M, Wickert J (2012) A methodology to compute GPS slant total delays in a numerical weather model. Radio Sci 47: RS2018. doi:10.1029/2011RS004853

  • Zus F, Dick G, Dousa J, Heise S, Wickert J (2014) The rapid and precise computation of GPS slant total delays and mapping factors utilizing a numerical weather model. Radio Sci. 49:207–216. doi:10.1002/2013RS005280

    Article  Google Scholar 

Download references

Acknowledgments

The GFS forecast data are provided by the National Centers for Environmental Prediction. The collaborative work is a contribution to the COST ES1206 project. Reviewers are gratefully acknowledged for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Zus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zus, F., Dick, G., Dousa, J. et al. Systematic errors of mapping functions which are based on the VMF1 concept. GPS Solut 19, 277–286 (2015). https://doi.org/10.1007/s10291-014-0386-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-014-0386-4

Keywords

Navigation