Skip to main content

Advertisement

Log in

Ionospheric mapping functions based on electron density fields

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

We develop an ionospheric mapping function (MF) for the global navigation satellite system (GNSS) which is based on the electron density field derived from the international reference ionosphere (IRI). The station specific MF utilizes a look-up table which contains a set of ray-traced ionospheric phase advances and code delays. Hence, unlike the simple MFs that are currently in use, the developed MF depends on the time, location, elevation and azimuth angle. Ray-bending is taken into account, which implies that the MF depends on the carrier frequency as well. The frequency dependency of the MF can be readily used to examine higher-order ionospheric effects due to ray-bending. We compare the proposed MF with the so-called single-layer model MF and find significant differences in particular around the equatorial anomaly. In so far as the proposed MF is based on a realistic electron density field (IRI), our comparison shows the potential error of the single-layer model MF in practice. We conclude that the developed MF concept might be valuable in the GNSS total electron content estimation. The frequency dependency of the MF can be used to mitigate higher-order ionospheric effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Altadill D, Magdaleno S, Torta JM, Blanch E (2013) Global empirical models of the density peak height and of the equivalent scale height for quiet conditions. Adv Space Res 52:1756–1769. doi:10.1016/j.asr.2012.11.018

    Article  Google Scholar 

  • Bilitza D (2001) International reference ionosphere 2000. Radio Sci 36(2):261–275. doi:10.1029/2000RS002432

    Article  Google Scholar 

  • Boehm J, Moeller G, Schindelegger M, Pain G, Weber R (2015) Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut 19:433–441. doi:10.1007/s10291-014-0403-7

    Article  Google Scholar 

  • Deng Z, Schöne T, Gendt G (2014) Status of the TIGA tide gauge data reprocessing at GFZ. In: International association of geodesy symposia, IAGS-D-13-00078

  • Galkin IA, Reinisch BW, Huang X, Bilitza D (2012) Assimilation of GIRO data into a real-time IRI. Radio Sci 47:RS0L07. doi:10.1029/2011RS004952

    Article  Google Scholar 

  • Hernandez-Pajares M, Juan JM, Sanz J (2005) Towards a more realistic mapping function. URSI GA, New Dehli, pp 38–43

    Google Scholar 

  • Hernández-Pajares M, Aragón-Ángel À, Defraigne P, Bergeot N, Prieto-Cerdeira R, García-Rigo A (2014) Distribution and mitigation of higher-order ionospheric effects on precise GNSS processing. J Geophys Res Solid Earth 119:3823–3837. doi:10.1002/2013JB010568

    Article  Google Scholar 

  • Hoque MM, Jakowski N (2008) Estimate of higher order ionospheric errors in GNSS positioning. Radio Sci 43:RS5008. doi:10.1029/2007RS003817

    Article  Google Scholar 

  • Jin R, Jin SG, Feng GP (2012) M_DCB: matlab code for estimating GNSS satellite and receiver differential code biases. GPS Solut 16(4):541–548. doi:10.1007/s10291-012-0279-3

    Article  Google Scholar 

  • Jin SG, Jin R, Li D (2016a) Assessment of BeiDou differential code bias variations from multi-GNSS network observations. Ann Geophys 34(2):259–269. doi:10.5194/angeo-34-259-2016

    Article  Google Scholar 

  • Jin SG, Qian XD, Kutoglu H (2016b) Snow depth variations estimated from GPS-Reflectometry: a case study in Alaska from L2P SNR data. Remote Sens 8(1):63. doi:10.3390/rs8010063

    Article  Google Scholar 

  • Kashcheyev A, Nava B, Radicella SM (2012) Estimation of higher-order ionospheric errors in GNSS positioning using a realistic 3-D electron density model. Radio Sci 47:RS4008. doi:10.1029/2011RS004976

    Article  Google Scholar 

  • Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16):1829. doi:10.1029/2003GL017639

    Article  Google Scholar 

  • Komjathy A (1997) Global ionospheric total electron content mapping using the global positioning system. University of New Brunswick Technical Report No. 188. PhD thesis, University of New Brunswick

  • Larson KM, Nievinski FG (2013) GPS snow sensing: results from the Earth Scope Plate Boundary Observatory. GPS Solut 17:41–52

    Article  Google Scholar 

  • Li X, Zus F, Lu C, Ning T, Dick G, Ge M, Wickert J, Schuh H (2015) Retrieving high-resolution tropospheric gradients from multiconstellation GNSS observations. Geophys Res Lett 42:4173–4181. doi:10.1002/2015GL063856

    Article  Google Scholar 

  • Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, Runge TF (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33:565–582

    Article  Google Scholar 

  • Matteo NA, Morton YT (2011) Ionospheric geomagnetic field: Comparison of IGRF model prediction and satellite measurements 1991–2010. Radio Sci 46:RS4003. doi:10.1029/2010RS004529

    Article  Google Scholar 

  • Moore RC, Morton YT (2011) Magneto-ionic polarization and GPS signal propagation through the ionosphere. Radio Sci 46:RS1008. doi:10.1029/2010RS004380

    Article  Google Scholar 

  • Nava B, Coïsson P, Radicella SM (2008) A new version of the NeQuick ionosphere electron density model. J Atmos Sol Terr Phys 70:1856–1862. doi:10.1016/j.jastp.2008.01.015

    Article  Google Scholar 

  • Palamartchouk K (2010) Apparent geocenter oscillations in Global Navigation Satellite Systems solutions caused by the ionospheric effect of second order. J Geophys Res 115:B03415. doi:10.1029/2008JB006099

    Article  Google Scholar 

  • Petrie E, Hernández-Pajares M, Spalla P, Moore P, King MA (2011) A Review of higher order ionospheric refraction effects on dual frequency GPS. Surv Geophys 32:197–253. doi:10.1007/s10712-010-9105-z

    Article  Google Scholar 

  • Ping J, Matsumoto K, Heki K, Saito A, Callahan P, Potts L, Shum C (2004) Validation of Jason-1 nadir ionosphere TEC using GEONET. Mar Geod 27:741–752

    Article  Google Scholar 

  • Schaer S (1999) Mapping and predicting the earth’s ionosphere using the Global Positioning System. Ph.D. Thesis, Univ. Bern, Bern, Switzerland

  • Shubin VN (2015) Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations. Adv Space Res 56:916–928. doi:10.1016/j.asr.2015.05.029

    Article  Google Scholar 

  • Vergados P, Komjathy A, Runge TF, Butala MD, Mannucci AJ (2016) Characterization of the impact of GLONASS observables on receiver bias estimation for ionospheric studies. Radio Sci 51:1010–1021. doi:10.1002/2015RS005831

    Article  Google Scholar 

  • Wee T-K, Kuo Y-H (2015) A perspective on the fundamental quality of GPS radio occultation data. Atmos Meas Tech 8:4281–4294. doi:10.5194/amt-8-4281-2015

    Article  Google Scholar 

  • Yue X, Schreiner WS, Kuo Y-H, Hunt DC, Wang W, Solomon SC, Burns AG, Bilitza D, Liu J-Y, Wan W, Wickert J (2012) Global 3-D ionospheric electron density reanalysis based on multisource data assimilation. J Geophys Res 117:A09325. doi:10.1029/2012JA017968

    Google Scholar 

  • Zus F, Dick G, Douša J, Heise S, Wickert J (2014) The rapid and precise computation of GPS slant total delays and mapping factors utilizing a numerical weather model. Radio Sci 49:207–216. doi:10.1002/2013RS005280

    Article  Google Scholar 

  • Zus F, Dick G, Douša J, Wickert J (2015a) Systematic errors of mapping functions which are based on the VMF1 concept. GPS Solut 19(2):277–286

    Article  Google Scholar 

  • Zus F, Dick G, Heise S, Wickert J (2015b) A forward operator and its adjoint for GPS slant total delays. Radio Sci 50:393–405. doi:10.1002/2014RS005584

    Article  Google Scholar 

Download references

Acknowledgments

The IRI data are available at http://iri.gsfc.nasa.gov/. The IGRF data are available at http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html. The GFS data are provided by the National Centers for Environmental Prediction (www.ncep.noaa.gov). Reviewers are gratefully acknowledged for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Zus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zus, F., Deng, Z., Heise, S. et al. Ionospheric mapping functions based on electron density fields. GPS Solut 21, 873–885 (2017). https://doi.org/10.1007/s10291-016-0574-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-016-0574-5

Keywords

Navigation