Skip to main content
Log in

The anthropogenic environment lessens the intensity and prevalence of gastrointestinal parasites in Balinese long-tailed macaques (Macaca fascicularis)

  • Original Article
  • Published:
Primates Aims and scope Submit manuscript

Abstract

The distribution of wildlife parasites in a landscape is intimately tied to the spatial distribution of hosts. In parasite species, including many gastrointestinal parasites, with obligate or common environmental life stages, the dynamics of the parasite can also be strongly affected by geophysical components of the environment. This is especially salient in host species, for example humans and macaques, which thrive across a wide variety of habitat types and quality and so are exposed to a wealth of environmentally resilient parasites. Here, we examine the effect of environmental and anthropogenic components of the landscape on the prevalence, intensity, and species diversity of gastrointestinal parasites across a metapopulation of long-tailed macaques on the island of Bali, Indonesia. Using principal-components analysis, we identified significant interaction effects between specific environmental and anthropogenic components of the landscape, parsing the Balinese landscape into anthropogenic (PC1), mixed environment (PC2), and non-anthropogenic (PC3) components. Further, we determined that the anthropogenic environment can mitigate the prevalence and intensity of specific gut parasites and the intensity of the overall community of gut parasites, but that non-anthropogenically driven landscape components have no significant effect in increasing or reducing the intensity or prevalence of the community of gut parasites in Balinese macaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson DR, Beaudoin RL (1966) Host habitat and age as factors in the prevalence of intestinal parasites of the muskrat. Bull Wildl Dis Assoc 2:70–77

    Google Scholar 

  • Arneberg P, Skorping A, Grenfell B, Read AF (1998) Host densities as determinants of abundance in parasite communities: comparative analyses of directly transmitted nematodes of mammals. Ecography 25:88–94

    Article  Google Scholar 

  • Bagge AM, Poulin R, Valtonen ET (2004) Fish population size, and not density, as the determining factor of parasitic infection: a case study. Parasitology 128:305–313

    Article  PubMed  CAS  Google Scholar 

  • Baird JK (2003) Host age as a determinant of naturally acquired immunity in Plasmodium falciparum. Parasitol Today 11:105–111

    Article  Google Scholar 

  • Baudoin M (1975) Host castration as a parasitic strategy. Evolution 29(2):335–352

    Article  Google Scholar 

  • Brown CR, Brown MB (1986) Ectoparasitism as a cost of coloniality in cliff swallows (Hirundo pyrrhonota). Ecology 67:1206–1218

    Article  Google Scholar 

  • Chapman CA, Gillespie TR, Goldberg TL (2005a) Primates and the ecology of their infectious diseases: how will anthropogenic change affect host–parasite interactions? Evol Anthropol 14:134–144

    Article  Google Scholar 

  • Chapman CA, Gillespie TR, Speirs ML (2005b) Parasite prevalence and richness in sympatric colobines: gastrointestinal parasites from forest edge and interior primate groups. Am J Primatol 68:1–12

    Google Scholar 

  • Combes C (1996) Parasites, biodiversity and ecosystem stability. Biodivers Conserv 5:953–962

    Article  Google Scholar 

  • Combes C (2001) Parasitism: the ecology and evolution of intimate interactions. University of Chicago Press, Chicago

    Google Scholar 

  • Cote IM, Poulin R (1995) Parasitism and group size in social mammals: a meta-analysis. Behav Ecol 6:159–165

    Article  Google Scholar 

  • Daszak P, Cunningham AA, Hyatt AD (2001) Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 78:103–116

    Article  PubMed  CAS  Google Scholar 

  • Dobson AP (1988) The population biology of parasite-induced changes in host behavior. Q Rev Biol 63:139–165

    Article  PubMed  CAS  Google Scholar 

  • Ekanayake DK, Arulkanthan A, Horadagoda NU, Sanjeevani GKM, Kieft R, Gunatilake S, Dittus WPJ (2006) Prevalence of Crypotosporidium and other enteric parasites among wild non-human primates in Polonnaruwa, Sri Lanka. Am J Trop Med 74:322–329

    Google Scholar 

  • Ezenwa VO (2006) Host social behavior and parasitic infection: a multifactorial approach. Behav Ecol 15:446–454

    Article  Google Scholar 

  • Ferrari N, Cattadori IM, Nespereira J, Rizzoli A, Hudson PJ (2004) The role of host sex in parasite dynamics: experiments on the yellow-necked mouse Apodemus flavicollis. Ecol Lett 7:88–94

    Article  Google Scholar 

  • Foreyt WJ (2001) Veterinary parasitology: reference manual, 5th edn. Blackwell, Oxford

    Google Scholar 

  • Freeland WJ (1979) Primate social groups as biological islands. Ecology 61:1297–1303

    Article  Google Scholar 

  • Fuentes A (2007) Social organization: social systems and the complexities in understanding the evolution of primate behavior. In: Campbell CJ, Fuentes A, MacKinnon KC, Panger M, Bearder SK (eds) Primates in perspective. Oxford University Press, Oxford, pp 609–621

    Google Scholar 

  • Fuentes A (2009) A new synthesis: resituating approaches to the evolution of human behavior. Anthropol Today 25:12–17

    Article  Google Scholar 

  • Fuentes A, Southern M, Suaryana KG (2005) Monkey forests and human landscapes: is extensive sympatry sustainable for Homo sapiens and Macaca fascicularis in Bali? In: Patterson J (ed) Commensalism and conflict: the primate–human interface. American Society of Primatology Publications, Norman

    Google Scholar 

  • Garcia LS (1999) Practical guide to diagnostic parasitology. American Society of Microbiology Press, Washington DC

    Google Scholar 

  • Gasser RB, de Gruijter JM, Polderman AM (2009) The utility of molecular methods for elucidating primate–pathogen relationships––the Oesophagostomum bifurcum example. In: Huffman MA, Chapman CA (eds) Primate parasite ecology: the dynamics and study of host–parasite relationships. Cambridge University Press, Cambridge, pp 47–63

    Google Scholar 

  • Greiner EC, McIntosh A (2009) Collection methods and diagnostic procedures for primate parasitology. In: Huffman MA, Chapman CA (eds) Primate parasite ecology: the dynamics and study of host–parasite relationships. Cambridge University Press, Cambridge, pp 3–28

    Google Scholar 

  • Grutter AS (1998) Habitat-related differences in the abundance of parasites from a coral reef fish: an indication of the movement patterns of Hemigymnus melapterus. J Fish Biol 53:49–57

    Google Scholar 

  • Gurarie D, Seto EYW (2008) Connectivity sustains disease transmission in environments with low potential for endemicity. J R Soc Interface 6(35):495–508

    PubMed  Google Scholar 

  • Hartwig W (2007) Primate evolution. In: Campbell CJ, Fuentes A, MacKinnon KC, Panger M, Bearder SK (eds) Primates in perspective. Oxford University Press, Oxford, pp 11–22

    Google Scholar 

  • Haufstater G, Meade BJ (1982) Alteration of sleeping groves by yellow baboons (Papio cynocephalus) as a strategy for parasite avoidance. Primates 23:287–297

    Article  Google Scholar 

  • Hurd H (2001) Host fecundity reduction: a strategy for damage limitation? Trends Parasitol 17:363–368

    Article  PubMed  CAS  Google Scholar 

  • Jaffee B, Phillips R, Muldoon A, Mangel M (1992) Density-dependent host–pathogen dynamics in soil microcosms. Ecology 73:495–506

    Article  Google Scholar 

  • Jones-Engel L, Engel GA, Schillaci MA, Kyes K, Froelich J, Paputungan U, Kyes RC (2004) Prevalence of enteric parasites in pet macaques in Sulawesi, Indonesia. Am J Primatol 62:71–82

    Article  PubMed  Google Scholar 

  • Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk. Ecol Lett 9:485–498

    Article  PubMed  CAS  Google Scholar 

  • Kripalani RH, Kulkarni A (1998) Rainfall variability over South-east Asia––connections with Indian monsoon and ENSO extremes: new perspectives. Int J Climatol 17:1155–1168

    Article  Google Scholar 

  • Kumagai M, Koayashi S, Okita T, Ohtoma H (2001) Modifications of Kohn’s chlorazol black E staining and Wheatley’s trichrome staining for temporary wet mount and permanent preparation of Entamoeba histolytica. J Parasitol 87:701–704

    Google Scholar 

  • Lane KE, Lute M, Rompis A, Wandia IN, Arta Putra IG, Hollocher H, Fuentes A (2010) Pests, pestilence, and people: the long-tailed macaque and its role in the cultural complexities of Bali. In: Gursky-Doyen S, Supriatna J (eds) Indonesian primates, developments in primatology: progress and prospects. Springer, Berlin, pp 235–248

    Google Scholar 

  • Lane KE, Putra IGA, Wandia IN, Rompis A, Hollocher H, Fuentes A (2011) Balinese perceptions of pathogen exposure in human communities surrounding long-tailed macaque populations. Ecol Environ Anthropol (in press)

  • Lee P (1999) Comparative primate socioecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Legesse M, Erko B (2004) Zoonotic intestinal parasites in Papio anubis (baboon) and Cercopithecus aethiops (vervet) from four localities in Ethiopia. Acta Tropica 90:231–236

  • Loudon J, Howell M, Fuentes A (2006) The importance of integrative anthropology: a preliminary investigation employing primatological and cultural anthropological data-collection methods in assessing human–monkey co-existence in Bali, Indonesia. Ecol Environ Anthropol 2(1):2–13

    Google Scholar 

  • Margolis L, Esch GW, Holmes JC, Kuris AM, Schad GA (1982) The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists) J Parasitol 68:131–133

    Google Scholar 

  • McKenna P (1981) The diagnostic value and interpretation of fecal egg counts in sheep. N Z Vet J 29:129–132

    Article  PubMed  CAS  Google Scholar 

  • Mohl K, Grosse K, Hamedy A, Wuste T, Kabelitz P, Lucker E (2009) Biology of Alaria spp. and human exposition risk to Alaria mesocercariae—a review. Parasitol Res 105:1–15

    Google Scholar 

  • Moller AP (1993) A fungus infecting domestic flies manipulates sexual behavior of its host. Behav Ecol Sociobiol 33:403–407

    Google Scholar 

  • Morand S (2000) Wormy world: comparative tests of theoretical hypotheses on parasite species richness. In: Poulin R, Morand S, Skorping A (eds) Evolutionary biology of host–parasite relationships: theory meets reality. Elsevier, Amsterdam

    Google Scholar 

  • Mouritsen KN, Poulin R (2003) The mud flat anemone–cockle association: mutualism in the intertidal zone? Oecologia 135:131–137

    PubMed  Google Scholar 

  • Niezen JH, Charleston WAG, Hodgson J, Miller CM, Waghorn TS, Robertson HA (2001) Effect of plant species on the larvae of gastrointestinal nematodes which parasitize sheep. Int J Parasitol 28:791–803

    Article  Google Scholar 

  • Nunn CL, Altizer S (2006) Infectious diseases in primates. Oxford University Press, Oxford

    Book  Google Scholar 

  • Nunn CL, Altizer S, Jones KE, Sechrest W (2003) Comparative tests of parasite species richness in primates. Am Nat 162:597–614

    Article  PubMed  Google Scholar 

  • Ostfeld RS, Glass GE, Keesing F (2005) Spatial epidemiology: an emerging (or reemerging) discipline. Trends Ecol Evol 20:328–336

    Article  PubMed  Google Scholar 

  • Paterson S, Lello J (2003) Mixed models: getting the best use of parasitological data. Trends Ecol Evol 19:370–375

    Google Scholar 

  • Patz JA, Graczyk TK, Geller N, Vittor AY (2000) Effects of environmental change of emerging parasitic diseases. Int J Parasitol 30:1395–1405

    Article  PubMed  CAS  Google Scholar 

  • Pederson AB, Fenton A (2006) Emphasizing the ecology in parasite community ecology. Trends Ecol Evol 22:133–139

    Article  Google Scholar 

  • Poulin R (1997) Species richness of parasite assemblages: evolution and patterns. Annu Rev Ecol Syst 28:341–358

    Article  Google Scholar 

  • Poulin R, Morand S (2004) Parasite biodiversity. Smithsonian Institute Press, Washington, DC

    Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  • Rendtorff RC, Holt CJ (1954) The experimental transmission of human intestinal protozoan parasites. 4. Attempts to transmit Entamoeba coli and Giardia lamblia cysts by water. Am J Hyg 60:327–338

    PubMed  CAS  Google Scholar 

  • Roberts MG, Dobson AP, Arneberg P, de Leo GA, Krecek RC, Manfredi MT, Lanfranchi P, Zaffaroni E (2002) Parasite community ecology and biodiversity. In: Hudson PJ, Rizzoli A, Grenfell BT, Hesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford University Press, Oxford, pp 63–82

    Google Scholar 

  • Roepstorff A, Murrell KD (1997) Transmission dynamics of helminth parasites of pigs on continuous pasture: Ascaris suum and Trichuris suis. Int J Parasitol 27:563–572

    Article  PubMed  CAS  Google Scholar 

  • Rozsa L, Reiczigel J, Majoros G (2000) Quantifying parasites in samples of hosts. J Parasitol 86:228–232

    Google Scholar 

  • Salzer JS, Rwego IB, Goldberg TL, Kuhlenschmidt MS, Gillespie TR (2007) Giardia sp. and Cryptosporidium sp. infections in primates in fragmented and undisturbed forest in western Uganda. J Parasitol 93:439–440

  • Schrag SJ, Weiner P (1995) Emerging infectious disease: what are the relative roles of ecology and evolution? Trends Ecol Evol 10:319–324

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Shrivastav AB, Sharma RK (2009) The epidemiology of gastrointestinal parasitism and body condition in free-ranging herbivores. Journal Threatened Taxa 1:535–537

    Google Scholar 

  • Sleeman JM, Meader LL, Mudakikwa AB, Foster JW, Patton S (2000) Gastrointestinal parasites of mountain gorillas (Gorilla gorilla beringei) in the Parc National des Volcans, Rwanda. J Zoo Wildl Med 31:322–328

    PubMed  CAS  Google Scholar 

  • Slifko TR, Smith HV, Rose JB (2000) Emerging parasite zoonoses associated with water and food. Int J Parasitol 30:1379–1393

    Article  PubMed  CAS  Google Scholar 

  • Snaith TV, Chapman CA, Rothman JM, Wasserman MD (2008) Bigger groups have fewer parasites and similar cortisol levels: a multi-group analysis in red colobus monkeys. Am J Primatol 70:1–9

    Article  Google Scholar 

  • Sogandaresbernal F (1955) Some helminth parasites of fresh and brackish water fishes from Louisiana and Panama. J Parasitol 41:582–587

    Google Scholar 

  • Southern MW (2002) An assessment of potential habitat corridors and landscape ecology for long-tailed macaques (Macaca fascicularis) on Bali, Indonesia [dissertation]. Central Washington University, Ellensberg

    Google Scholar 

  • Spellerberg IF, Fedor PJ (2003) A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity, and the ‘Shannon–Wiener’ Index. Glob Ecol Biogeogr 12:177–179

    Article  Google Scholar 

  • Stirnadel HA, Ebert D (1997) Prevalence, host specificity and impact on host fecundity of microparasites and epibionts in three sympatric Daphnia species. J Anim Ecol 66:212–222

    Article  Google Scholar 

  • Stuart MD, Strier KB, Peirberg SM (1993) A coprological survey of parasites of wild muriquis, Brachyteles arachnoids, and brown howling monkeys, Alouatta fusca. J Helminthol Soc WA 60:111–115

    Google Scholar 

  • Stuart M, Pendergast V, Rumfelt S, Pierberg S, Greenspan L, Glander K, Clarke M (1998) Parasites of wild howlers (Alouatta spp.). Int J Primatol 19:493–512

    Google Scholar 

  • Thieltges DW, Jensen KT, Poulin R (2008) The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135:407–426

    PubMed  CAS  Google Scholar 

  • Thierry B (2007) The macaques: a double-layered social organization. In: Campbell CJ, Fuentes A, MacKinnon KC, Panger M, Bearder SK (eds) Primates in perspective. Oxford University Press, Oxford, pp 224–240

    Google Scholar 

  • Trejo-Macias G, Estrada A, Cabrera MAM (2007) Survey of helminth parasites in populations of Aloutta palliata mexicana and A. pigra in continuous and in fragmented habitat in southern Mexico. Int J Primatol 28:931–945

    Article  Google Scholar 

  • van Schaik CP (1996) Social evolution in primates: the role of ecological factors and male behaviour. Proc Br Acad 88:9–31

    Google Scholar 

  • Varadharajan A, Pythal C (1999) Parasites of wildlife—I: a preliminary investigation on the parasites of wild animals at the Zoological Garden, Thiruvanathapuram, Kerala. Zoos’ Print Journal 14:159–164

    Google Scholar 

  • Wang WLL, Dunlop SG (1954) Animal parasites in sewage and irrigation water. Sew Ind Wastes 26:1020–1032

    CAS  Google Scholar 

  • Wolfe ND, Switzer WM (2009) Primate exposure and the emergence of novel retroviruses. In: Huffman MA, Chapman CA (eds) Primate parasite ecology: the dynamics and study of host–parasite relationships. Cambridge University Press, Cambridge, pp 353–370

    Google Scholar 

  • Wolfe ND, Escalante AA, Karesh WB, Kilbourn A, Spielman A, Lal AA (1998) Wild primate populations in emerging infectious disease research: the missing link? EID 4:149–158

    CAS  Google Scholar 

  • Zajac AM, Conboy GA (2006) Veterinary clinical parasitology, 7th edn. Blackwell–Wiley, Oxford

    Google Scholar 

Download references

Acknowledgments

We would like to thank Udayana Universitas and the Pusat Kajian Primata. We would also like to thank Rachel Polando, Natalie Griffiths, Sean Hoban, Janine Reugg, and three anonymous reviewers for their helpful comments and insights. This work was supported by the National Science Foundation (BSC-0629787), the University of Notre Dame’s Institute for Scholarship in the Liberal Arts, and the Leakey Foundation. All collections were approved by the University of Notre Dame IACUC (protocol 07-001) and the Indonesian Institute of Science (permit number 662.02/1090.DIII).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly E. Lane.

About this article

Cite this article

Lane, K.E., Holley, C., Hollocher, H. et al. The anthropogenic environment lessens the intensity and prevalence of gastrointestinal parasites in Balinese long-tailed macaques (Macaca fascicularis). Primates 52, 117–128 (2011). https://doi.org/10.1007/s10329-010-0230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-010-0230-6

Keywords

Navigation