Skip to main content
Log in

Relationship between the elemental composition of stream biofilms and water chemistry—a catchment approach

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

As benthic biofilms mediate essential functions in stream ecosystems (e.g., carbon flux, storage of nutrients and other substances), the element-specific regulation of the biofilm composition is of great interest. We tested whether (1) the elemental composition of biofilms is related to that of the water column and (2) there are different accumulation patterns from the dissolved phase (adsorption) and the particulate phase (incorporation of suspended matter). We analysed biomass parameters, nutrients and metals in biofilms and surface waters at 28 sites within a stream network (Bode catchment, Germany). Algal biomass in biofilms was dominated by diatoms. The P/C ratio in biofilms was positively related to total phosphorus of surface water (and to the proportion of agricultural area in the catchment) indicating phosphorus limitation of biofilms, whereas the N/C ratio was not related to nitrate levels of surface water, and neither the P/C nor the N/C ratio to the concentration of dissolved organic carbon (DOC) of surface water. Biofilms were enriched in metals compared to their concentrations in water. The metals in biofilms were positively related to the concentration of dissolved metals in surface water for iron and strontium (but not for manganese, copper, zinc, arsenic or lead) and to the concentrations of particle-associated metals of surface waters for strontium and lead. Manganese and arsenic were the metals with a negative effect on the biomasses of biofilm diatoms and cyanobacteria. Overall, we observed element-specific accumulation patterns in biofilms with selected elements being related to the water column while others were probably subject to biofilm-internal processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5
Fig. 6
Fig. 7
Fig 8

Similar content being viewed by others

References

  • Ancion, P.-Y., Lear, G., Dopheide, A., & Lewis, G. D. (2013). Metal concentration in stream biofilm and sediments and their potential to explain biofilm microbial community structure. Environmental Pollution, 173, 117–124.

    Article  CAS  Google Scholar 

  • Bärlocher, F., & Murdoch, J. H. (1989). Hyporheic biofilms—a potential food source for interstitial animals. Hydrobiologia, 184, 61–67.

    Article  Google Scholar 

  • Battin, T. J., Kaplan, L. A., Newbold, J. D., & Hansen, C. M. E. (2003). Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature, 426, 439–442.

    Article  CAS  Google Scholar 

  • Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., Packman, A. I., Newbold, J. D., & Sabater, F. (2008). Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geoscience, 1, 95–100.

    Article  CAS  Google Scholar 

  • Bechtold, H. A., Marcarelli, A. M., Baxter, C. V., & Inouye, R. S. (2012). Effects of N, P, and organic carbon on stream biofilm nutrient limitation and uptake in a semi-arid watershed. Limnology and Oceanography, 57, 1544–1554.

    Article  CAS  Google Scholar 

  • Behra, R., Ruperez, W., Wagne, B., Kistler, D., Sigg, L., Navarro, E., Robinson, C. (2005). Wie wirken sich Metalle auf Algenbiofilme aus? Eawag News: Biofilme 60d: 16–18.

  • Burns, A., & Walker, K. F. (2000). Biofilms as food for decapods (Atyidae, Palaemonidae) in the River Murray, South Australia. Hydrobiologia, 437, 83–90.

    Article  Google Scholar 

  • Campbell, P. G. C., Errecalde, O., Fortin, C., Hiriart-Baer, V. P., & Vigneault, B. (2002). Metal bioavailability to phytoplankton applicability of the biotic ligand model. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 133, 189–206.

    Google Scholar 

  • DIN EN 1484 (1997). Water analysis—guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC); German version. Berlin:Beuth.

    Google Scholar 

  • DIN EN ISO 6878 (2004). Water quality—determination of phosphorus—ammonium molybdate spectrometric method. Berlin:Beuth.

    Google Scholar 

  • EEA (2012). CORINE land cover. European Environment Agency. Acquired from http://www.eea.europa.eu/publications/COR0-landcover/page001.html Accessed in April 2012.

  • EU-WFD (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities L 327/1.

  • Fischer, H., Sachse, A., Steinberg, C. E. W., & Pusch, M. (2002). Differential retention and utilization of dissolved organic carbon by bacteria in river sediments. Limnology and Oceanography, 47, 1702–1711.

    Article  Google Scholar 

  • Flemming, H.-C. (1996). Sorption sites in biofilms. Water Science and Technology, 32, 27–33.

    Article  Google Scholar 

  • Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8, 623–633.

    CAS  Google Scholar 

  • Friese, K., Mages, M., Wendt-Potthoff, K., & Neu, T. R. (1997). Determination of heavy metals in biofilms from the River Elbe by total-reflection X-ray fluorescence spectrometry. Spectrochimica Acta, 52B, 1019–1025.

    Article  CAS  Google Scholar 

  • Guasch, H., Navarro, E., Serra, A., & Sabater, S. (2004). Phosphate limitation influences the sensitivity to copper in periphytic algae. Freshwater Biology, 49, 463–473.

    Article  CAS  Google Scholar 

  • Hillebrand, H., & Sommer, U. (1999). The nutrient stoichiometry of benthic microalgal growth: redfield proportions are optimal. Limnology and Oceanography, 44, 440–446.

    Article  Google Scholar 

  • Kamjunke, N., Büttner, O., Jäger, C. G., Marcus, H., von Tümpling, W., Halbedel, S., Norf, H., Brauns, M., Baborowski, M., Wild, R., Borchardt, D., & Weitere, M. (2013). Biogeochemical patterns in a river network along a land use gradient. Environmental Monitoring and Assessment, 185, 9221–9236.

    Article  CAS  Google Scholar 

  • Knauer, K., Behra, R., & Sigg, L. (1997). Effects of free Cu2+ and Zn2+ ions on growth and metal accumulation in freshwater algae. Environmental Toxicology and Chemistry, 16, 220–229.

    Article  CAS  Google Scholar 

  • Kröpfl, K., Vladar, P., Szabo, K., Ács, É., Borsodi, A. K., Szikora, S., Caroli, S., & Zaray, G. Y. (2006). Chemical and biological characterisation of biofilms formed on different substrata in Tisza river (Hungary). Environmental Pollution, 144, 626–631.

    Article  Google Scholar 

  • Lawrence, J. R., Scharf, B., Packroff, G., & Neu, T. R. (2002). Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microbial Ecology, 43, 199–207.

    Article  Google Scholar 

  • Le Faucheur, S., Sigg, L., & Behra, R. (2005). Phytochelatine als Metallindikatoren? Eawag News: Biofilme, 60d, 22–23.

    Google Scholar 

  • Lehto, L. L. P., & Hill, B. H. (2013). The effect of catchment urbanization on nutrient uptake and biofilm enzyme activity in Lake Superior (USA) tributary streams. Hydrobiologia, 713, 35–51.

    Article  CAS  Google Scholar 

  • Mages, M. (2013). Elementbestimmungen in aquatischen Biofilmen und Zooplankton mittels Total Reflektierender Röntgenfluoreszenz Analytik (TXRF). PhD thesis, Leuphana Universität Lüneburg.

  • Mages, M., Ovari, M., von Tümpling, W. J., & Kröpfl, K. (2004). Biofilms as bioindicators for polluted waters? Total reflection X-ray analysis of biofilms of the Tisza river (Hungary). Analytical and Bioanalytical Chemistry, 378, 1095–1101.

    Article  CAS  Google Scholar 

  • Mages, M., von Tümpling, W. Jr., van der Veen, A., Baborowski, M. (2006). Elemental determination in natural biofilms of mine drainage water by total reflection X-ray fluorescence spectrometry. Spectrochimica Acta Part B 61, 1146-1152.

    Article  Google Scholar 

  • Meylan, S., Behra, R., & Sigg, L. (2003). Accumulation of copper and zinc in periphyton in response to dynamic variations of metal speciation in freshwater. Environmental Science and Technology, 37, 5204–5212.

    Article  CAS  Google Scholar 

  • Meylan, S., Behra, R., & Sigg, L. (2004). Influence of metal speciation in natural freshwater on bioaccumulation of copper and zinc in periphyton: a microcosm study. Environmental Science and Technology, 38, 3104–3111.

    Article  CAS  Google Scholar 

  • Morin, S., Duong, T. T., Dabrin, A., Coyne, A., Herlory, O., Baudrimont, M., Delmas, F., Durrieu, G., Schäfer, J., Winterton, P., Blanc, G., & Coste, M. (2008). Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environmental Pollution, 151, 532–542.

    Article  CAS  Google Scholar 

  • Morton, S. D., & Lee, T. H. (1974). Algal blooms—possible effects of iron. Environmental Science and Technology, 8, 673–674.

    Article  CAS  Google Scholar 

  • Óvari, M., Mages, M., Woelfl, S., von Tümpling, Jun W., Kröpfl, K. (2004). Investigation of the bioavailability of metals bound on sediments for periphyton communities (biofilms) in freshwater. In: Cser, M. A., Sziklai, I. S., Etienne, J.-C., Maymard, Y., Centeno, J., Khassanova, L., Collery, P. (eds.), Metal ions in biology and medicine. John Libbey and Companay Ldt, London, Vol. 8, p. 311–314.

  • Romani, A. M., Guasch, H., Munoz, I., Ruana, J., Vilalta, E., Schwartz, T., Emtiazi, F., & Sabater, S. (2004). Biofilm structure and function and possible implications for riverine DOC dynamics. Microbial Ecology, 47, 316–328.

    Article  CAS  Google Scholar 

  • Sabater, S., Guasch, H., Romani, A., & Munoz, I. (2002). The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia, 469, 149–156.

    Article  CAS  Google Scholar 

  • Scott, J. T., Back, J. A., Taylor, J. M., & King, R. S. (2008). Does nutrient enrichment decouple algal-bacterial production in periphyton? Journal of the North American Benthological Society, 27, 332–344.

    Article  Google Scholar 

  • Sheldon, F., & Walker, K. F. (1997). Changes in biofilms induced by flow regulation could explain extinctions of aquatic snails in the Lower River Murray, Australia. Hydrobiologia, 347, 97–108.

    Article  CAS  Google Scholar 

  • Sterner, R. W., & Elser, J. J. (2002). Ecological stoichiometry: the biology of elements from molecules to the bioshere. Princeton University Press.

  • Tien, C.-J., & Chen, C. S. (2013). Patterns of metal accumulation by natural river biofilms during their growth and seasonal succession. Archives of Environmental Contamination and Toxicology, 64, 605–616.

    Article  CAS  Google Scholar 

  • Urabe, J., & Watanabe, Y. (1992). Possibility of N-limitation or P-limitation for planktonic cladocerans—an experimental test. Limnology and Oceanography, 37, 244–251.

    Article  CAS  Google Scholar 

  • Van Horn, D. J., Sinsabaugh, R. L., Takacs-Vesbach, C. D., Mitchell, K. R., & Dahm, C. N. (2011). Response of heterotrophic stream biofilm communities to a gradient of resources. Aquatic Microbial Ecology, 64, 149–161.

    Article  Google Scholar 

  • Volesky, B. (1990). Biosorption of fungal biomass. In B. Volesky (Ed.), Biosorption of heavy metal. Boca Raton: CRC press.

    Google Scholar 

  • Woelfl, S., Mages, M., & Encina, F. (2003). Cold plasma ashing improves the trace element detection of single Daphia specimens by total reflection X-ray fluorescence spectrometry. Spectrochimica Acta Part B, 58, 2157–2168.

    Article  Google Scholar 

  • Zacharias, S., Bogena, H., Samaniego, L., Mauder, M., Fuß, R., Pütz, T., Frenzel, M., Schwank, M., Baessler, C., Butterbach-Bahl, K., Bens, O., Borg, E., Brauer, A., Dietrich, P., Hajnsek, I., Helle, G., Kiese, R., Kunstmann, H., Klotz, S., Munch, J. C., Papen, H., Priesack, E., Schmid, H. P., Steinbrecher, R., Rosenbaum, U., Teutsch, G., & Vereecken, H. (2011). A network of terrestrial environmental observatories in Germany. Vadose Zone Journal, 10, 955–973.

    Article  Google Scholar 

Download references

Acknowledgments

We thank many colleagues for their help during field sampling: S. Bauth, M. Cebula, T. David, H. Goreczka, M. Herzog, A. Hoff, U. Kiewel, B. Kuehn, K. Lerche, M. Mages, M. Schäffer and C. Völkner. A. Hoff, U. Link, B. Keller and M. Wengler contributed to subsequent analyses in the laboratory. The TERENO infrastructure is funded by the Helmholtz Association and the Federal Ministry of Education and Research. Furthermore, we would like to thank Frederic Bartlett for the language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Kamjunke.

Electronic supplementary material

ESM 1

(DOCX 19 kb)

ESM 2

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamjunke, N., Mages, M., Büttner, O. et al. Relationship between the elemental composition of stream biofilms and water chemistry—a catchment approach. Environ Monit Assess 187, 432 (2015). https://doi.org/10.1007/s10661-015-4664-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4664-6

Keywords

Navigation