Skip to main content
Log in

Trophic ecology of a freshwater sponge (Spongilla lacustris) revealed by stable isotope analysis

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The vital roles that sponges play in marine habitats are well-known. However, sponges inhabiting freshwaters have been largely ignored despite having widespread distributions and often high local abundances. We used natural abundance stable isotope signatures of carbon and nitrogen (δ 13C and δ 15N) to infer the primary food source of the cosmopolitan freshwater sponge Spongilla lacustris. Our results suggest that S. lacustris feed largely on pelagic resources and may therefore link pelagic and benthic food webs. A facultative association between S. lacustris and endosymbiotic green algae caused S. lacustris to have significantly depleted carbon and nitrogen signatures that may reflect carbon and nitrogen exchange between sponges and their symbiotic algae. Isotopic data from specialist sponge consumers demonstrated that sponges hosting zoochlorellae were the major component of the diet of the spongillafly Climacia areolaris and the sponge-eating caddisfly Ceraclea resurgens suggesting that the symbiosis between freshwater sponges and algae is important to sponge predator trophic ecology. Our results help define the role of sponges in freshwater ecosystems and shed new light on the evolution and ecological consequences of a complex tri-trophic symbiosis involving freshwater sponges, zoochlorellae, and spongivorous insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bailey, R. C., K. E. Day, R. H. Norris & T. B. Reynoldson, 1995. Macroinvertebrate community structure and sediment bioassay results from nearshore areas of North American Great Lakes. Journal of Great Lakes Research 21: 42–52.

    Article  Google Scholar 

  • Becerro, M. A., 2003. Can a sponge feeder be a herbivore? Tylodina perversa (Gastropoda) feeding on Aplysina aerophoba (Demospongiae). Biological Journal of the Linnean Society 78: 429–438.

    Article  Google Scholar 

  • Becerro, M. A., 2008. Quantitative trends in sponge ecology research. Marine Ecology (Berlin, West) 29: 167–177.

    Article  Google Scholar 

  • Brown, H. P., 1952. The life history of Climacia areolaris (Hagen), a neuropterous ‘parasite’ of fresh water sponges. American Midland Naturalist 47: 130–160.

    Article  Google Scholar 

  • Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Sciences of the United States of America 93: 10844–10847.

    Article  PubMed  CAS  Google Scholar 

  • Corallini, C. & E. Gaino, 2001. Peculiar digestion patterns of sponge-associated zoochlorellae in the caddisfly Ceraclea fulva. Tissue & Cell 33: 402–407.

    Article  CAS  Google Scholar 

  • Diaz, C. M. & K. Rützler, 2001. Sponges: an essential component of Caribbean coral reefs. Bulletin of Marine Science 69: 535.

    Google Scholar 

  • France, R. L., 1995. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnology and Oceanography 40: 1310–1313.

    Article  Google Scholar 

  • Frost, T., 1997. A yellow-green algal symbiont in the freshwater sponge, Corvomeyenia everetti: convergent evolution of symbiotic associations. Freshwater Biology 38: 395–399.

    Article  Google Scholar 

  • Frost, T. M., 1980. Clearance rate determinations for the fresh-water sponge Spongilla lacustris: effects of temperature, particle type and concentration, and sponge size. Archiv Fur Hydrobiologie 90: 330–356.

    Google Scholar 

  • Frost, T. M., 1981. Analysis of ingested particles within a fresh-water sponge. Transactions of the American Microscopical Society 100: 271–277.

    Article  Google Scholar 

  • Frost, T. M. & C. E. Williamson, 1980. In situ determination of the effects of symbiotic algae on the growth of the fresh-water sponge Spongilla lacustris. Ecology 61: 1361–1370.

    Article  Google Scholar 

  • Frost, T. M., G. S. Denagy & J. J. Gilbert, 1982. Population dynamics and standing biomass of the fresh-water sponge Spongilla lacustris. Ecology 63: 1203–1210.

    Article  Google Scholar 

  • Frost, T. M., & J. E. Elias, 1985. The balance of autotrophy and heterotrophy in three freshwater sponges with algal symbionts. New perspectives in sponge biology. Smithsonian Institution, 478–484.

  • Fry, B., 2006. Stable Isotope Ecology. Springer, New York.

    Book  Google Scholar 

  • Gaino, E., T. Lancioni, G. La Porta & B. Todini, 2004. The consortium of the sponge Ephydatia fluviatilis (L.) living on the common reed Phragmites australis in Lake Piediluco (central Italy). Hydrobiologia 520: 165–178.

    Article  Google Scholar 

  • Hargrave, B. T., 1970. The utilization of benthic microflora by Hyalella azteca (Amphipoda). The Journal of Animal Ecology 39: 427–437.

    Article  Google Scholar 

  • Jewell, M. E., 1936. An ecological study of the fresh-water sponges of northeastern Wisconsin. Ecological Monographs 5: 461–504.

    Article  Google Scholar 

  • Lesser, M. P., 2006. Benthic-pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. Journal of Experimental Marine Biology and Ecology 328: 277–288.

    Article  Google Scholar 

  • Mann, K. H., R. H. Britton, A. Kowalczewski, T. J. Lack, C. P. Mathews & I. McDonald, 1972. Productivity and energy flow at all trophic levels in the River Thames, England. In Kajak, Z. & A. Hillbrich-Ilkowska (eds), Productivity Problems of Freshwaters. Polish Scientific Publishers, Warsaw: 579–596.

    Google Scholar 

  • Matteson, J. D. & G. Z. Jacobi, 1980. Benhic macroinvertebrates found on the fresh-water sponge Spongilla lacustris. Great Lakes Entomologist 13: 169–172.

    Google Scholar 

  • Minigawa, M. & E. Wada, 1984. Stepwise enrichment of 15 N along food chains: further evidence in the relation between 15 N and animal age. Geochimica et Cosmochima Acta 48: 1135–1140.

    Article  Google Scholar 

  • Muscatine, L., J. W. Porter & I. R. Kaplan, 1989. Resource partitioning by reef corals as determined from stable isotope composition. Marine Biology 100: 185–193.

    Article  Google Scholar 

  • Parfenova, V. V., I. A. Terkina, T. Y. Kostornova, I. G. Nikulina, V. I. Chernykh & E. A. Maksimova, 2008. Microbial community of freshwater sponges in Lake Baikal. Biology Bulletin 35: 374–379.

    Article  Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable Isotopes in Ecosystem Studies. Annual Review of Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  • Pile, A. J., 2006. The natural diet of a hexactinellid sponge: benthic-pelagic coupling in a deep-sea microbial food web. Deep-sea Research Part A 53: 1148–1156.

    Article  Google Scholar 

  • Pile, A. J., M. R. Patterson, M. Savarese, V. I. Chernykh & V. A. Fialkov, 1997. Trophic effects of sponge feeding within Lake Baikal’s littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux. Limnology and Oceanography 42: 178–184.

    Article  CAS  Google Scholar 

  • Pile, A. J., A. Grant, R. Hinde & M. A. Borowitzka, 2003. Heterotrophy on ultraplankton communities is an important source of nitrogen for a sponge-rhodophyte symbiosis. Journal of Experimental Biology 206: 4533–4538.

    Article  PubMed  Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Reiswig, H. M., 1971. Particle feeding in natural populations of three marine demosponges. Biological Bulletin 141: 568.

    Google Scholar 

  • Reiswig, H. M., T. M. Frost & A. Ricciardi, 2010. Porifera. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates, 3rd ed. Academic Press, London: 91–123.

    Chapter  Google Scholar 

  • Resh, V. H., 1976a. Biology and immature stages of the caddisfly genus Ceraclea in eastern North America (Trichoptera: Leptoceridae). Annals of the Entomological Society of America 69: 1039–1061.

    Google Scholar 

  • Resh, V. H., 1976b. Life histories of coexisting species of Ceraclea caddisflies (Trichoptera: Leptoceridae). Canadian Entomologist 108: 1303–1318.

    Article  Google Scholar 

  • Roback, S. S., 1968. Insects associated with the sponge Spongilla fragilis in the Savannah River. Notulae Naturae 412: 1–10.

    Google Scholar 

  • Roque, F. D. O., 2004. Species of Oukuriella Epler (Diptera, Chironomidae) inside freshwater sponges in Brazil. Revista brasileira de entomologia 48: 291–292.

    Article  Google Scholar 

  • Rützler, K., 2004. Sponges on coral reefs: a community shaped by competitive cooperation. Bollettino dei Musei e degli Istituti Biologici dell’Universita` di Genova 68: 85–148.

    Google Scholar 

  • Sata, N. U., M. Kaneniwa, Y. Masuda, Y. Ando & H. Iida, 2002. Fatty acid composition of two species of Japanese freshwater sponges Heterorotula multidentata and Spongilla alba. Fisheries Science 68: 236–238.

    Article  CAS  Google Scholar 

  • Vander Zanden, M. J. & J. B. Rasmussen, 1999. Primary consumer delta C-13 and delta N-15 and the trophic position of aquatic consumers. Ecology 80: 1395–1404.

    Article  Google Scholar 

  • Vander Zanden, M. J. & J. B. Rasmussen, 2001. Variation in delta 15N and delta 13C Trophic Fractionation: implications for Aquatic Food Web Studies. Limnology and Oceanography 46: 2061–2066.

    Article  CAS  Google Scholar 

  • Williamson, C. E., 1979. Ultrastructural investigation of the algal symbiosis in white and green Spongilla lacustris (L) (Porifera, Spongillidae). Transactions of the American Microscopical Society 98: 59–77.

    Article  Google Scholar 

Download references

Acknowledgments

Our sincerest thanks to Alec R. Lindsay and Alan J. Rebertus for their advice during the planning and execution of this project, to Kalin Wise and Steve Connolly for help in the field and laboratory and to Thomas D. Getman for providing vital laboratory equipment. Previous drafts of this manuscript were greatly improved by thoughtful comments from Bryan L. Brown, Robert P. Creed, and two anonymous reviewers. All isotope mass spectrometry was conducted by the staff at the Alaska Stable Isotope Facility at the University of Alaska Fairbanks. This study was funded by the Charles C. Spooner Research Fund and the Northern Michigan University Excellence in Education Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Skelton.

Additional information

Handling editor: David J. Hoeinghaus

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skelton, J., Strand, M. Trophic ecology of a freshwater sponge (Spongilla lacustris) revealed by stable isotope analysis. Hydrobiologia 709, 227–235 (2013). https://doi.org/10.1007/s10750-013-1452-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1452-6

Keywords

Navigation