Skip to main content
Log in

Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance

  • PLANTS IN HYDROSYSTEMS
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A number of mechanisms result in a feedback between water clarity and macrophytes and, consequently, the occurrence of alternative stable states in shallow lakes. We hypothesize that bottom-up mechanisms and interactions within the benthic food web are more important in a charophyte-dominated clear-water state, while top-down mechanism and interactions in the planktonic food web prevail at angiosperm dominance. Charophytes, which dominate at lower nutrient concentrations and develop higher densities than most angiosperms, can have a higher influence on sedimentation, resuspension, and water column nutrients. During dominance of dense submerged vegetation like charophytes, zooplankton can be hampered by low food quality and quantity and by high predation pressure from juvenile fish, which in turn are favoured by the high refuge potential of this vegetation. Grazing pressure from zooplankton on phytoplankton can therefore be low in charophytes, but the main feedback in angiosperm-dominated ecosystems. Charophytes offer a higher surface than most angiosperms to periphyton, which favors benthic invertebrates. These support macrophytes by grazing periphyton and constitute a central link in a trophic cascade from fish to periphyton and macrophytes. To test these hypotheses, more experiments and field measurements comparing the effect of charophytes and angiosperms on water clarity are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anthoni, U., C. Christophersen, J. Madsen, S. Wium-Andersen & N. Jacobsen, 1980. Biologically active sulphur compounds from the green algae Chara globularis. Phytochemistry 19: 1228–1229.

    CAS  Google Scholar 

  • Bachmann, R. W., M. V. Hoyer & D. E. Canfield Jr, 1999. The restoration of Lake Apopka in relation to alternative stable states. Hydrobiologia 394: 219–232.

    CAS  Google Scholar 

  • Bakker, E. S., E. van Donk, S. A. J. Declerck, N. R. Helmsing, B. Hidding & B. A. Nolet, 2010. Effect of macrophyte community composition and nutrient enrichment on plant biomass and algal blooms. Basic and Applied Ecology 11: 432–439.

    Google Scholar 

  • Bakker, E. S., J. M. Sarneel, R. D. Gulati, Z. Liu & E. van Donk, 2013. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710: 23–37.

    Google Scholar 

  • Barko, J. W. & W. F. James, 1998. Effects of submerged macrophytes on nutrient dynamics, sedimentation, and resuspension. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 197–214.

  • Beklioglu, M. & B. Moss, 1996a. Mesocosm experiments on the interaction of sediment influence, fish predation and aquatic plants with the structure of phytoplankton and zooplankton communities. Freshwater Biology 36: 315–325.

    Google Scholar 

  • Beklioglu, M. & B. Moss, 1996b. Existence of a macrophyte-dominated clearwater state over a very wide range of nutrient concentrations in a small shallow lake. Hydrobiologia 337: 93–106.

    CAS  Google Scholar 

  • Bengtsson, L., T. Hellström & L. Rakoczi, 1990. Redistribution of sediments in three Swedish lakes. Hydrobiologia 192: 167–181.

    Google Scholar 

  • Benoy, G. A. & J. Kalff, 1999. Sediment accumulation and Pb burdens in submerged macrophyte beds. Limnology & Oceanography 44: 1081–1090.

    CAS  Google Scholar 

  • Berger, J. & M. Schagerl, 2003. Allelopathic activity of Chara aspera. Hydrobiologia 501: 109–115.

    CAS  Google Scholar 

  • Berger, J. & M. Schagerl, 2004. Allelopathic activity of Characeae. Biologia 59: 9–15.

    Google Scholar 

  • Blindow, I., 1992. Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biology 28: 15–27.

    Google Scholar 

  • Blindow, I. & M. J. M. Hootsmans, 1991. Allelopathic effects from Chara spp. on two species of unicellular green algae. In Hootsmans, M. J. M. & J. E. Vermaat (eds), Macrophytes, A key to Understanding Changes Caused by Eutrophication in Shallow Freshwater Ecosystems: 139–144. International Institute for Hydraulic and Environmental Engineering, The Netherlands. IHE Report Series 21.

  • Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology 30: 159–167.

    Google Scholar 

  • Blindow, I., A. Hargeby, B. M. A. Wagner & G. Andersson, 2000. How important is the crustacean plankton for the maintenance of water clarity in shallow lakes with abundant submerged vegetation? Freshwater Biology 44: 185–197.

    Google Scholar 

  • Blindow, I., A. Hargeby & G. Andersson, 2002. Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquatic Botany 72: 315–334.

    Google Scholar 

  • Boström, B. & K. Pettersson, 1982. Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia 92: 415–429.

    Google Scholar 

  • Brönmark, C., 1985. Interactions between macrophytes, epiphytes and herbivores: an experimental approach. Oikos 45: 26–30.

    Google Scholar 

  • Brönmark, C., 1989. Interactions between epiphytes, macrophytes and freshwater snails: a review. Journal of Molluscan Studies 55: 299–311.

    Google Scholar 

  • Brönmark, C., 1994. Effects of tench and perch on interactions in a freshwater, benthic food chain. Ecology 75: 1818–1828.

    Google Scholar 

  • Brönmark, C. & J. E. Vermaat, 1998. Complex fish-snail-epiphyton interactions and their effects on submerged freshwater macrophytes. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 47–68.

  • Brönmark, C. & S. E. B. Weisner, 1992. Indirect effects of fish community structure on submerged vegetation in shallow, eutrophic lakes—an alternative mechanism. Hydrobiologia 243(244): 293–301.

    Google Scholar 

  • Carpenter, S. R., 1981. Submerged vegetation: an internal factor in lake ecosystem succession. American Naturalist 118: 372–383.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.

    Google Scholar 

  • Casanova, M. T., M. D. de Winton & J. S. Clayton, 2003. Do charophytes clear turbid water? Verhandlungen Internationale Vereiningung für Theroretische und Angewandte Limnologie 26: 1440–1443.

    Google Scholar 

  • Cattaneo, A., 1987. Periphyton in lakes of different trophy. Canadian Journal of Fisheries and Aquatic Sciences 44: 296–303.

    Google Scholar 

  • Crawford, S. A., 1977. Chemical, physical and biological changes associated with Chara succession. Hydrobiologia 55: 209–218.

    Google Scholar 

  • Crowder, L. B. & W. E. Cooper, 1979. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.

    Google Scholar 

  • De Backer, S., S. Van Onsem & L. Triest, 2010. Influence of submerged vegetation and fish abundance on water clarity in peri-urban eutrophic ponds. Hydrobiologia 656: 255–267.

    CAS  Google Scholar 

  • Declerck, S. A. J., E. S. Bakker, B. van Lith, A. Kersbergen & E. van Donk, 2011. Effects of nutrient additions and macrophyte composition on invertebrate community assembly and diversity in experimental ponds. Basic and Applied Ecology 12: 466–475.

    Google Scholar 

  • Diehl, S., 1988. Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73: 1646–1661.

    Google Scholar 

  • Diehl, S. & R. Kornijow, 1998. Influence of submerged macrophytes on trophic interactions among fish and macroinvertebrates. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 24–46.

  • Dorenbosch, M. & E. S. Bakker, 2011. Herbivory in omnivorous fishes: effect of plant secondary metabolites and prey stoichiometry. Freshwater Biology 56: 1783–1797.

    Google Scholar 

  • Duarte, C. & J. Kalff, 1990. Biomass density and the relationship between submerged macrophyte biomass and plant growth form. Hydrobiologia 196: 17–23.

    Google Scholar 

  • Dugdale, T. M., B. J. Hicks, M. De Winton & A. Taumopeau, 2006. Fish exclosures versus intensive fishing to restore charophytes in a shallow New Zealand lake. Aquatic Conservation: Marine and Freshwater Ecosystems 16: 193–202.

    Google Scholar 

  • Dvorak, J. & E. P. H. Best, 1982. Macroinvertebrate communities associated with the macrophytes of Lake Vechten: structural and functional relationships. Hydrobiologia 95: 115–126.

    Google Scholar 

  • Faafeng, B. A. & M. Mjelde, 1998. Clear and turbid water in shallow Norwegian lakes related to submerged vegetation. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 361–368.

  • Forsberg, C., 1965. Ecological and physiological studies of charophytes. Abstract of Uppsala Dissertations in Science 53: 1–10.

    Google Scholar 

  • Gregg, W. W. & F. Rose, 1985. Influences of aquatic macrophytes on invertebrate community structure, guild structure, and microdistribution in streams. Hydrobiologia 128: 45–56.

    Google Scholar 

  • Grimm, M. P. & J. J. G. M. Backx, 1990. The restoration of shallow eutrophic lakes and the role of northern pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200(201): 557–566.

    Google Scholar 

  • Gross, E. M., S. Hilt, P. Lombardo & G. Mulderij, 2007. Searching for allelopathy in action—state of the art and open questions. Hydrobiologia 584: 77–88.

    CAS  Google Scholar 

  • Hamilton, D. P. & S. F. Mitchell, 1996. An empirical model for sediment resuspension in shallow lakes. Hydrobiologia 317: 209–220.

    Google Scholar 

  • Hann, B. J., 1991. Invertebrate grazer–periphyton interactions in a eutrophic marsh pond. Freshwater Biology 26: 87–96.

    Google Scholar 

  • Hanson, M. A. & M. G. Butler, 1994. Responses to food web manipulation in a shallow waterfowl lake. Hydrobiologia 279(280): 457–466.

    Google Scholar 

  • Hargeby, A., 1990. Macrophyte associated invertebrates and the effect of habitat permanence. Oikos 57: 338–346.

    Google Scholar 

  • Hargeby, A., G. Andersson, I. Blindow & S. Johansson, 1994. Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 279(280): 83–90.

    Google Scholar 

  • Hargeby, A., I. Blindow & L.-A. Hansson, 2004. Shifts between clear and turbid states in a shallow lake: multi-causal stress from climate, nutrients and biotic interactions. Archiv für Hydrobiologie 161: 433–454.

    Google Scholar 

  • Hargeby, A., H. Blom, I. Blindow & G. Andersson, 2005. Increased growth and recruitment of piscivorous perch, Perca fluviatilis, during a transient phase of expanding submerged vegetation in a shallow lake. Freshwater Biology 50: 2053–2062.

    Google Scholar 

  • Hecky, R. E. & R. H. Hesslein, 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14: 631–653.

    Google Scholar 

  • Hidding, B., R. J. Brederveld & B. A. Nolet, 2010. How a bottom-dweller beats the canopy: inhibition of an aquatic weed (Potamogeton pectinatus) by macroalgae (Chara spp.). Freshwater Biology 55: 1758–1768.

    Google Scholar 

  • Higler, L. W. G., 1975. Analysis of the macrofauna community on Stratiotes vegetation. Verhandlungen der Internationalen Vereinigung für Limnologie 19: 2773–2777.

    Google Scholar 

  • Hilt, S. & E. M. Gross, 2008. Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? Basic and Applied Ecology 9: 422–432.

    Google Scholar 

  • Hilt, S., I. Henschke, J. Rücker & B. Nixdorf, 2010. Can submerged macrophytes influence turbidity and trophic state in deep lakes? Suggestions from a case study. Journal of Environmental Quality 39: 725–733.

    CAS  PubMed  Google Scholar 

  • Hilt, S., R. Adrian, J. Köhler, M. T. Monaghan & C. Sayer, 2013. Clear, crashing, turbid and back—long-term changes of macrophyte assemblages in a shallow lake. Freshwater Biology 58: 2027–2036.

    Google Scholar 

  • Hough, R. A. & D. A. Putt, 1988. Factors influencing photosynthetic productivity of Chara vulgaris L. in a moderately productive hardwater lake. Journal of Freshwater Ecology 4: 411–418.

    CAS  Google Scholar 

  • Ibelings, B. W., R. Portielje, E. H. R. R. Lammens, R. Noorhuis, M. van den Berg, W. Joosse & M. L. Meijer, 2007. Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: lake Veluwe as a case study. Ecosystems 10: 4–10.

    CAS  Google Scholar 

  • Jaschinski, S., D. C. Brepohl & U. Sommer, 2011. The trophic importance of epiphytic algae in a freshwater macrophyte system (Potamogeton perfoliatus L.): stable isotope and fatty acid analyses. Aquatic Sciences 73: 91–101.

    CAS  Google Scholar 

  • Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjær & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, longterm stability and conclusions. Hydrobiologia 200(201): 219–227.

    Google Scholar 

  • Jeppesen, E., T. Lauridsen, T. Kairesalo & M. Perrow, 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In Jeppesen, E., M. Søndergaard, M. Søndergaard, K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 91–114.

  • Jeppesen, E., J. P. Jensen, M. Søndergaard & T. Lauridsen, 1999. Trophic dynamics in turbid and clear water lakes with special emphasis on the role of zooplankton for water clarity. Hydrobiologia 408(409): 217–231.

    Google Scholar 

  • Jónasson, P. M. & H. Adalsteinsson, 1979. Phytoplankton production in shallow eutrophic Lake Myvatn, Iceland. Oikos 32: 113–138.

    Google Scholar 

  • Jones, J. I. & C. Sayer, 2003. Does fish–invertebrate–periphyton cascade precipitate plant loss in shallow lakes? Ecology 84: 2155–2167.

    Google Scholar 

  • Jones, J. I. & S. Waldron, 2003. Combined stable isotope and gut contents analysis of food webs in plant-dominated, shallow lakes. Freshwater Biology 48: 1396–1407.

    Google Scholar 

  • Jones, J. I., B. Moss & J. O. Young, 1998. The interactions between periphyton, non molluscan invertebrates, and fish in standing freshwaters. In Jeppesen, E., M. Søndergaard, M. Søndergaard, K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 69–90.

  • Karabin, A., J. Ejsmont-Karabin & R. Kornatowska, 1997. Eutrophication processes in a shallow, macrophyte-dominated lake: factors influencing zooplankton structure and density in Lake Luknajno (Poland). Hydrobiologia 342(343): 401–409.

    Google Scholar 

  • Körner, S. & T. Dugdale, 2003. Is roach herbivory preventing re-colonization of a shallow lake with submerged macrophytes? Hydrobiologia 506: 497–501.

    Google Scholar 

  • Krecker, F. H., 1939. A comparative study of the animal populations of certain submerged aquatic plants. Ecology 20: 553–562.

    Google Scholar 

  • Kuczynska-Kippen, N., 2008. Spatio-temporal segregation of cladocerans within a Chara hispida bed. Journal of Freshwater Ecology 23: 643–650.

    Google Scholar 

  • Kufel, L. & I. Kufel, 2002. Chara beds acting as nutrient sinks in shallow lakes: a review. Aquatic Botany 72: 249–260.

    Google Scholar 

  • Kufel, L. & T. Ozimek, 1994. Can Chara control phosphorus cycling in Lake Luknajno (Poland)? Hydrobiologia 275(276): 277–283.

    Google Scholar 

  • Lauridsen, T. L. & I. Buenk, 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. Archiv für Hydrobiologie 137: 161–176.

    Google Scholar 

  • Lauridsen, T., L. J. Pedersen, E. Jeppesen & Ma. Søndergaard, 1996. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. Journal of Plankton Research 18: 2283–2294.

    Google Scholar 

  • Lewin, W., N. Okun & T. Mehner, 2004. Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshwater Biology 49: 410–424.

    Google Scholar 

  • Liboriussen, L. & E. Jeppesen, 2006. Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations. Freshwater Biology 51: 95–109.

    CAS  Google Scholar 

  • Marklund, O., I. Blindow & A. Hargeby, 2001. Distribution and diel migration of macroinvertebrates within dense submerged vegetation. Freshwater Biology 46: 913–924.

    Google Scholar 

  • Meeuwig, J. J., J. B. Rasmussen & R. H. Peters, 1998. Turbid waters and clarifying mussels: their moderation of empirical chl: nutrient relations in estuaries in Prince Edward Island, Canada. Marine Ecology Progress Series 171: 139–150.

    CAS  Google Scholar 

  • Meijer, M.-L, 2000. Biomanipulation in the Netherlands. 15 years of experience. Ph.D. Thesis, University of Wageningen, The Netherlands.

  • Meijer, M.-L., E. Jeppesen, E. van Donk, B. Moss, M. Scheffer, E. Lammens, E. van Nes, J. A. van Berkum, G. J. de Jong, B. A. Faafeng & J. P. Jensen, 1994. Long-term responses to fish stock reduction in small shallow lakes: interpretation of five-year results of four biomanipulation cases in the Netherlands and Denmark. Hydrobiologia 275(276): 457–466.

    Google Scholar 

  • Miller, S. A. & F. D. Provenza, 2007. Mechanisms of resistance of freshwater macrophytes to herbivory by invasive juvenile common carp. Freshwater Biology 52: 39–49.

    Google Scholar 

  • Moss, B., 1989. Water pollution and the management of ecosystems: a case study of science and scientist. In Grubb, P. J. & J. B. Whittaker (eds), Towards a more exact ecology. Blackwell, Oxford: 401–422.

    Google Scholar 

  • Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200(201): 367–377.

    Google Scholar 

  • Mulderij, G., E. van Donk & J. G. M. Roelofs, 2003. Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia 491: 261–271.

    Google Scholar 

  • Mulderij, G., E. van Nes & E. van Donk, 2007. Macrophyte–phytoplankton interactions: the relative importance of allelopathy versus other factors. Ecological Modelling 204: 85–92.

    Google Scholar 

  • Nepf, H. M. & E. W. Koch, 1999. Vertical secondary flows in submerged plant-like arrays. Limnology & Oceanography 44: 1072–1080.

    CAS  Google Scholar 

  • Nicolle, A., L.-A. Hansson & C. Brönmark, 2010. Habitat structure and juvenile fish ontogeny shape zooplankton spring dynamics. Hydrobiologia 652: 119–125.

    Google Scholar 

  • Nõges, P., L. Tuvikene, T. Feldmann, I. Tõnno, H. Künnap, H. Luup, J. Salujõe & T. Nõges, 2003. The role of charophytes in increasing water transparency: a case study of two shallow lakes in Estonia. Hydrobiologia 506–509: 567–573.

    Google Scholar 

  • Okun, N., W. C. Lewin & T. Mehner, 2005. Top-down and bottom-up impacts of juvenile fish in a littoral reed stand. Freshwater Biology 50: 798–812.

    Google Scholar 

  • Otsuki, A. & R. G. Wetzel, 1972. Coprecipitation of phosphate with carbonates in a marl rich lake. Limnology & Oceanography 17: 763–767.

    CAS  Google Scholar 

  • Pereya-Ramos, E., 1981. The ecological role of Characeae in the lake littoral. Ekologia Polska 29: 167–209.

    Google Scholar 

  • Perrow, M. R., M.-L. Meijer, P. Dawidowicz & H. Coops, 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342(343): 355–365.

    Google Scholar 

  • Persson, L. & L. B. Crowder, 1998. Fish–habitat interactions mediated via ontogenetic niche shifts. In Jeppesen, E., M. Søndergaard, M. Søndergaard, K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 3–23.

  • Phillips, G. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquatic Botany 4: 103–126.

    Google Scholar 

  • Richter, D. & E. M. Gross, 2013. Chara can outcompete Myriophyllum under low phosphorus supply. Aquatic Sciences 75: 457–467.

    CAS  Google Scholar 

  • Samuelsson, G. 1925. Untersuchungen über die höhere Wasserflora von Dalarne. Svenska Växtsociologiska Sällskap Handlingar: 9.

  • Sayer, C. D., T. A. Davidson & J. I. Jones, 2010. Seasonal dynamics of macrophytes and phytoplankton in shallow lakes: a eutrophication-driven pathway from plants to plankton. Freshwater Biology 55: 500–513.

    CAS  Google Scholar 

  • Scheffer, M., 1990. Multiplicity of alternative stable states in freshwater systems. Hydrobiologia 200(201): 475–486.

    Google Scholar 

  • Scheffer, M., 1998. Ecology of shallow lakes. Chapman and Hall, London.

    Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    CAS  Google Scholar 

  • Scheffer, M., M. S. van den Berg, A. W. Breukelaar, C. P. M. Breukers, H. Coops, R. W. Doef & M.-L. Meijer, 1994. Vegetated areas with clear water in turbid shallow lakes. Aquatic Botany 49: 193–196.

    Google Scholar 

  • Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: 272–282.

    Google Scholar 

  • Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001a. Catastrophic shifts in ecosystems. Nature 413: 591–596.

    CAS  PubMed  Google Scholar 

  • Scheffer, M., D. Straile, E. H. van Nes & S. H. Hosper, 2001b. Climatic warming causes regime shifts in lake food webs. Limnology & Oceanography 46: 1780–1783.

    Google Scholar 

  • Schulze, T., U. Baade, H. Dörner, R. Eckmann, S. S. Haertel-Borer, F. Hölker & T. Mehner, 2006. Interactions of residential piscivores with an introduced new predator type in a mesotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences 63: 2202–2212.

    Google Scholar 

  • Siong, K. & T. Asaeda, 2006. Does calcite encrustation in Chara provide a phosphorus nutrient sink? Journal of Environmental Quality 35: 490–494.

    CAS  PubMed  Google Scholar 

  • Stansfield, J., M. R. Perrow, L. D. Tench, A. J. D. Jowitt & A. A. L. Taylor, 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342(343): 229–240.

    Google Scholar 

  • Ten Winkel, E. H. & J. T. Meulemans, 1984. Effects of cyprinid fish on submerged vegetation. Hydrobiological Bulletin 18: 157–158.

    Google Scholar 

  • Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnology & Oceanography 29: 472–486.

    Google Scholar 

  • Van den Berg, M. S., H. Coops, M.-L. Meijer, M. Scheffer & J. Simons, 1998a. Clear water associated with a dense Chara vegetation in the shallow and turbid Lake Veluwemeer, The Netherlands. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, New York: 339–352.

  • Van den Berg, M. S., M. Scheffer & H. Coops, 1998b. The role of Characean algae in the management of eutrophic shallow lakes. Journal of Phycology 34: 750–756.

    Google Scholar 

  • Van den Berg, M. S., M. Scheffer, E. H. van Nes & H. Coops, 1999. Dynamics and stability of Chara sp. and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 409: 335–342.

    Google Scholar 

  • Van den Berg, M. S., H. Coops, J. Simons & J. Pilon, 2002. A comparative study of the use of inorganic carbon resources by Chara aspera and Potamogeton pectinatus. Aquatic Botany 72: 219–233.

    Google Scholar 

  • Van Donk, E. & D. O. Hessen, 1993. Grazing resistance in nutrient-stressed phytoplankton. Oecologia 93: 508–511.

    Google Scholar 

  • Van Donk, E. & W. J. van de Bund, 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72: 261–274.

    Google Scholar 

  • Vander Zanden, J. & Y. Vadeboncoeur, 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83: 2152–2161.

    Google Scholar 

  • Van Wijk, R. J., 1988. Ecological studies on Potamogeton pectinatus L. I. General characteristics, biomass production and life cycles under field conditions. Aquatic Botany 31: 211–258.

    Google Scholar 

  • Vermaat, J. E., L. Santamaria & P. J. Roos, 2000. Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Archiv für Hydrobiologie 148: 549–562.

    CAS  Google Scholar 

  • Villena, M. J. & S. Romo, 2007. Effects of nutrients, fish, charophytes and algal sediment recruitment on the phytoplankton ecology of a shallow lake. International Revue of Hydrobiology 92: 626–639.

    Google Scholar 

  • Winfield, L. J., 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus, rudd, Scardinius erythrophthalmus, and perch, Perca fluviatilis. Journal of Fish Biology 29: 37–48.

    Google Scholar 

  • Wium-Andersen, S., U. Anthoni, C. Christophersen & G. Houen, 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39: 187–190.

    Google Scholar 

  • Zhang, T. T., M. He, A. P. Wu & L. W. Nie, 2009. Allelopathic effects of submerged macrophyte Chara vulgaris on toxic Microcystis aeruginosa. Allelopathy Journal 23: 391–402.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmgard Blindow.

Additional information

Guest editors: M. T. Ferreira, M. O’Hare, K. Szoszkiewicz & S. Hellsten / Plants in Hydrosystems: From Functional Ecology to Weed Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blindow, I., Hargeby, A. & Hilt, S. Facilitation of clear-water conditions in shallow lakes by macrophytes: differences between charophyte and angiosperm dominance. Hydrobiologia 737, 99–110 (2014). https://doi.org/10.1007/s10750-013-1687-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1687-2

Keywords

Navigation