Skip to main content

Advertisement

Log in

Human T Follicular Helper Cells in Primary Immunodeficiency: Quality Just as Important as Quantity

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

T follicular helper (Tfh) cells are a subset of effector CD4+ T cells specialised to induce Ab production by B cells. This review highlights some of the recent advances in the field of human Tfh cells that have come from the study of primary immunodeficiencies. In particular it is increasingly evident that the quality of the Tfh cells that are generated, is just as important as the quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deenick EK, Ma CS, Brink R, Tangye SG. Regulation of t follicular helper cell formation and function by antigen presenting cells. Curr Opin Immunol. 2011;23(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  2. Zhu J, Yamane H, Paul WE. Differentiation of effector cd4 t cell populations. Annu Rev Immunol. 2010;28:445–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Breitfeld D, Ohl L, Kremmer E, Ellwart J, Sallusto F, Lipp M, et al. Follicular b helper t cells express cxc chemokine receptor 5, localize to b cell follicles, and support immunoglobulin production. J Exp Med. 2000;192(11):1545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. Cxc chemokine receptor 5 expression defines follicular homing t cells with b cell helper function. J Exp Med. 2000;192(11):1553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chtanova T, Tangye SG, Newton R, Frank N, Hodge MR, Rolph MS, et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-th1/th2 effector cells that provide help for b cells. J Immunol. 2004;173(1):68–78.

    Article  CAS  PubMed  Google Scholar 

  6. Rasheed A-U, Rahn H-P, Sallusto F, Lipp M, Müller G. Follicular b helper t cell activity is confined to cxcr5(hi)icos(hi) cd4 t cells and is independent of cd57 expression. Eur J Immunol. 2006;36(7):1892–903.

    Article  CAS  PubMed  Google Scholar 

  7. Kim CH, Rott LS, Clark-Lewis I, Campbell DJ, Wu L, Butcher EC. Subspecialization of cxcr5+ t cells: B helper activity is focused in a germinal center-localized subset of cxcr5+ t cells. J Exp Med. 2001;193(12):1373–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim JR, Lim HW, Kang SG, Hillsamer P, Kim CH. Human cd57+ germinal center-t cells are the major helpers for gc-b cells and induce class switch recombination. BMC Immunol. 2005;6(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bryant VL, Ma CS, Avery DT, Li Y, Good KL, Corcoran LM, et al. Cytokine-mediated regulation of human b cell differentiation into ig-secreting cells: Predominant role of il-21 produced by cxcr5+ t follicular helper cells. J Immunol. 2007;179(12):8180–90.

    Article  CAS  PubMed  Google Scholar 

  10. Ma CS, Uzel G, Tangye SG. Human t follicular helper cells in primary immunodeficiencies. Curr Opin Pediatr. 2014;26(6):720–6.

    Article  CAS  PubMed  Google Scholar 

  11. Choi YS, Yang JA, Crotty S. Dynamic regulation of bcl6 in follicular helper cd4 t (tfh) cells. Curr Opin Immunol. 2013;25(3):366–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma CS, Suryani S, Avery DT, Chan A, Nanan R, Santner-Nanan B, et al. Early commitment of naïve human cd4(+) t cells to the t follicular helper (t(fh)) cell lineage is induced by il-12. Immunol Cell Biol. 2009;87(8):590–600.

    Article  CAS  PubMed  Google Scholar 

  13. Ma CS, Avery DT, Chan A, Batten M, Bustamante J, Boisson-Dupuis S, et al. Functional stat3 deficiency compromises the generation of human t follicular helper cells. Blood. 2012;119(17):3997–4008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Batten M, Ramamoorthi N, Kljavin NM, Ma CS, Cox JH, Dengler HS, et al. Il-27 supports germinal center function by enhancing il-21 production and the function of t follicular helper cells. J Exp Med. 2010;207(13):2895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmitt N, Liu Y, Bentebibel S-E, Munagala I, Bourdery L, Venuprasad K, et al. The cytokine tgf-β co-opts signaling via stat3-stat4 to promote the differentiation of human tfh cells. Nat Immunol. 2014;15(9):856–65.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Morita R, Schmitt N, Bentebibel S-E, Ranganathan R, Bourdery L, Zurawski G, et al. Human blood cxcr5(+)cd4(+) t cells are counterparts of t follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011;34(1):108–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chevalier N, Jarrossay D, Ho E, Avery DT, Ma CS, Yu D, et al. Cxcr5 expressing human central memory cd4 t cells and their relevance for humoral immune responses. J Immunol. 2011;186(10):5556–68.

    Article  CAS  PubMed  Google Scholar 

  18. Locci M, Havenar-Daughton C, Landais E, Wu J, Kroenke MA, Arlehamn CL, et al. Human circulating pd.-1 + cxcr3-cxcr5+ memory tfh cells are highly functional and correlate with broadly neutralizing hiv antibody responses. Immunity. 2013;39(4):758–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. He J, Tsai LM, Leong YA, Hu X, Ma CS, Chevalier N, et al. Circulating precursor ccr7(lo)pd.-1(hi) cxcr5(+) cd4(+) t cells indicate tfh cell activity and promote antibody responses upon antigen reexposure. Immunity. 2013;39(4):770–81.

    Article  CAS  PubMed  Google Scholar 

  20. Simpson N, Gatenby PA, Wilson A, Malik S, Fulcher DA, Tangye SG, et al. Expansion of circulating t cells resembling follicular helper t cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 2009;62(1):234–44.

    Article  Google Scholar 

  21. Ma CS, Wong N, Rao G, Avery DT, Torpy J, Hambridge T, et al. Monogenic mutations differentially affect the quantity and quality of t follicular helper cells in patients with human primary immunodeficiencies. J Allergy Clin Immunol. 2015;136(4):993–1006.e1.

    Article  CAS  PubMed  Google Scholar 

  22. Lougaris V, Badolato R. S. Ferrari, and A. Plebani, Hyper immunoglobulin m syndrome due to cd40 deficiency: Clinical, molecular, and immunological features. Immunol Rev. 2005;203:48–66.

    Article  CAS  PubMed  Google Scholar 

  23. Aruffo A, Farrington M, Hollenbaugh D, Li X, Milatovich A, Nonoyama S, et al. The cd40 ligand, gp39, is defective in activated t cells from patients with x-linked hyper-igm syndrome. Cell. 1993;72(2):291–300.

    Article  CAS  PubMed  Google Scholar 

  24. Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, et al. Cd40 ligand gene defects responsible for x-linked hyper-igm syndrome. Science. 1993;259(5097):990–3.

    Article  CAS  PubMed  Google Scholar 

  25. Agematsu K, Nagumo H, Shinozaki K, Hokibara S, Yasui K, Terada K, et al. Absence of igd-cd27(+) memory b cell population in x-linked hyper-igm syndrome. J Clin Invest. 1998;102(4):853–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bossaller L, Burger J, Draeger R, Grimbacher B, Knoth R, Plebani A, et al. Icos deficiency is associated with a severe reduction of cxcr5 + cd4 germinal center th cells. J Immunol. 2006;177(7):4927–32.

    Article  CAS  PubMed  Google Scholar 

  27. Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, et al. Icos is an inducible t-cell co-stimulator structurally and functionally related to cd28. Nature. 1999;397(6716):263–6.

    Article  CAS  PubMed  Google Scholar 

  28. Grimbacher B, Hutloff A, Schlesier M, Glocker E, Warnatz K, Dräger R, et al. Homozygous loss of icos is associated with adult-onset common variable immunodeficiency. Nat Immunol. 2003;4(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  29. Warnatz K, Bossaller L, Salzer U, Skrabl-Baumgartner A, Schwinger W, Van Der Burg M, et al. Human icos deficiency abrogates the germinal center reaction and provides a monogenic model for common variable immunodeficiency. Blood. 2006;107(8):3045–52.

    Article  CAS  PubMed  Google Scholar 

  30. Jacquemin C, Schmitt N, Contin-Bordes C, Liu Y, Narayanan P, Seneschal J, et al. Ox40 ligand contributes to human lupus pathogenesis by promoting t follicular helper response. Immunity. 2015;42(6):1159–70.

    Article  CAS  PubMed  Google Scholar 

  31. Johnston RJ, Poholek AC, Ditoro D, Yusuf I, Eto D, Barnett B, et al. Bcl6 and blimp-1 are reciprocal and antagonistic regulators of t follicular helper cell differentiation. Science. 2009;325(5943):1006–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Byun M, Ma CS, Akçay A, Pedergnana V, Palendira U, Myoung J, et al. Inherited human ox40 deficiency underlying classic kaposi sarcoma of childhood. J Exp Med. 2013;210(9):1743–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, De Beaucoudrey L, Feinberg J, et al. Inborn errors of il-12/23- and ifn-gamma-mediated immunity: Molecular, cellular, and clinical features. Semin Immunol. 2006;18(6):347–61.

    Article  CAS  PubMed  Google Scholar 

  34. Altare F, Durandy A, Lammas D, Emile JF, Lamhamedi S, Le Deist F, et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science. 1998;280(5368):1432–5.

    Article  CAS  PubMed  Google Scholar 

  35. De Jong R, Altare F, Haagen IA, Elferink DG, Boer T, Van Breda Vriesman PJ, et al. Severe mycobacterial and salmonella infections in interleukin-12 receptor-deficient patients. Science. 1998;280(5368):1435–8.

    Article  PubMed  Google Scholar 

  36. Schmitt N, Bustamante J, Bourdery L, Bentebibel SE, Boisson-Dupuis S, Hamlin F, et al. Il-12 receptor β1 deficiency alters in vivo t follicular helper cell response in humans. Blood. 2013;121(17):3375–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmitt N, Morita R, Bourdery L, Bentebibel SE, Zurawski SM, Banchereau J, et al. Human dendritic cells induce the differentiation of interleukin-21-producing t follicular helper-like cells through interleukin-12. Immunity. 2009;31(1):158–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Glocker E-O, Kotlarz D, Boztug K, Gertz EM, Schäffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Avery DT, Bryant VL, Ma CS, De Waal Malefyt R, Tangye SG. Il-21-induced isotype switching to igg and iga by human naive b cells is differentially regulated by il-4. J Immunol. 2008;181(3):1767–79.

    Article  CAS  PubMed  Google Scholar 

  40. Avery DT, Deenick EK, Ma CS, Suryani S, Simpson N, Chew GY, et al. B cell-intrinsic signaling through il-21 receptor and stat3 is required for establishing long-lived antibody responses in humans. J Exp Med. 2010;207(1):155–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kotlarz D, Ziętara N, Uzel G, Weidemann T, Braun CJ, Diestelhorst J, et al. Loss-of-function mutations in the il-21 receptor gene cause a primary immunodeficiency syndrome. J Exp Med. 2013;210(3):433–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kotlarz D, Zietara N, Milner JD, Klein C. Human il-21 and il-21r deficiencies: two novel entities of primary immunodeficiency. Curr Opin Pediatr. 2014;26(6):704–12.

    Article  CAS  PubMed  Google Scholar 

  43. Stepensky P, Keller B, Abuzaitoun O, Shaag A, Yaacov B, Unger S, et al. Extending the clinical and immunological phenotype of human interleukin-21 receptor deficiency. Haematologica. 2015;100(2):e72–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Salzer E, Kansu A, Sic H, Majek P, Ikinciogullari A, Dogu FE, et al. Early-onset inflammatory bowel disease and common variable immunodeficiency-like disease caused by il-21 deficiency. J Allergy Clin Immunol. 2014;133(6):1651–9 e12.

    Article  CAS  PubMed  Google Scholar 

  45. Dupuis S, Dargemont C, Fieschi C, Thomassin N, Rosenzweig S, Harris J, et al. Impairment of mycobacterial but not viral immunity by a germline human stat1 mutation. Science. 2001;293(5528):300–3.

    Article  CAS  PubMed  Google Scholar 

  46. Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S, et al. Impaired response to interferon-alpha/beta and lethal viral disease in human stat1 deficiency. Nat Genet. 2003;33(3):388–91.

    Article  CAS  PubMed  Google Scholar 

  47. Liu L, Okada S, Kong X-F, Kreins AY, Cypowyj S, Abhyankar A, et al. Gain-of-function human stat1 mutations impair il-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, et al. Dominant-negative mutations in the DNA-binding domain of stat3 cause hyper-ige syndrome. Nature. 2007;448(7157):1058–62.

    Article  CAS  PubMed  Google Scholar 

  49. Holland SM, Deleo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, et al. Stat3 mutations in the hyper-ige syndrome. N Engl J Med. 2007;357(16):1608–19.

    Article  CAS  PubMed  Google Scholar 

  50. Minegishi Y. Hyper-ige syndrome. Curr Opin Immunol. 2009;21(5):487–92.

    Article  CAS  PubMed  Google Scholar 

  51. Mazerolles F., C Picard, S Kracker, A Fischer, and A Durandy. Blood cd4 + cd45ro + cxcr5+ t cells are decreased but partially functional in signal transducer and activator of transcription 3 deficiency. J Allergy Clin Immunol. 2013;131(4):1146–56.

  52. De Lendonck Y, Eddahri LF, Delmarcelle Y, Nguyen M, Leo O, Goriely S, et al. Stat3 signaling induces the differentiation of human icos + cd4 t cells helping b lymphocytes. PloS One. 2013;8(7):e71029.

    Article  Google Scholar 

  53. Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, et al. Deficient expression of a b cell cytoplasmic tyrosine kinase in human x-linked agammaglobulinemia. Cell. 1993;72(2):279–90.

    Article  CAS  PubMed  Google Scholar 

  54. Boisson B, Wang Y-D, Bosompem A, Ma CS, Lim A, Kochetkov T, et al. A recurrent dominant negative e47 mutation causes agammaglobulinemia and bcr(−) b cells. J Clin Invest. 2013;123(11):4781–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martini H, Enright V, Perro M, Workman S, Birmelin J, Giorda E, et al. Importance of b cell co-stimulation in cd4(+) t cell differentiation: X-linked agammaglobulinaemia, a human model. Clin Exp Immunol. 2011;164(3):381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma CS, Nichols KE, Tangye SG. Regulation of cellular and humoral immune responses by the slam and sap families of molecules. Annu Rev Immunol. 2007;25:337–79.

    Article  CAS  PubMed  Google Scholar 

  57. Ma CS, Hare NJ, Nichols KE, Dupré L, Andolfi G, Roncarolo M-G, et al. Impaired humoral immunity in x-linked lymphoproliferative disease is associated with defective il-10 production by cd4+ t cells. J Clin Invest. 2005;115(4):1049–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma CS, Pittaluga S, Avery DT, Hare NJ, Maric I, Klion AD, et al. Selective generation of functional somatically mutated igm + cd27+, but not ig isotype-switched, memory b cells in x-linked lymphoproliferative disease. J Clin Invest. 2006;116(2):322–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Deenick EK, Chan A, Ma CS, Gatto D, Schwartzberg PL, Brink R, et al. Follicular helper t cell differentiation requires continuous antigen presentation that is independent of unique b cell signaling. Immunity. 2010;33(2):241–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Coraglia A, Felippo M, Schierloh P, Malbran A, De Bracco MMDE. Cd4+ t lymphocytes with follicular helper phenotype (t(fh)) in patients with sh2d1a deficiency (xlp). Clin Immunol. 2011;141(3):357–64.

    Article  CAS  PubMed  Google Scholar 

  61. Smahi A, Courtois G, Vabres P, Yamaoka S, Heuertz S, Munnich A, et al. Genomic rearrangement in nemo impairs nf-kappab activation and is a cause of incontinentia pigmenti. The international incontinentia pigmenti (ip) consortium. Nature. 2000;405(6785):466–72.

    Article  CAS  PubMed  Google Scholar 

  62. Zonana J, Elder ME, Schneider LC, Orlow SJ, Moss C, Golabi M, et al. A novel x-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in ikk-gamma (nemo). Am J Hum Genet. 2000;67(6):1555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jain A, Ma CA, Liu S, Brown M, Cohen J, Strober W. Specific missense mutations in nemo result in hyper-igm syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol. 2001;2(3):223–8.

    Article  CAS  PubMed  Google Scholar 

  64. Filipe-Santos O, Bustamante J, Haverkamp MH, Vinolo E, Ku C-L, Puel A, et al. X-linked susceptibility to mycobacteria is caused by mutations in nemo impairing cd40-dependent il-12 production. J Exp Med. 2006;203(7):1745–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S, et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity. 2006;25(5):745–55.

    Article  CAS  PubMed  Google Scholar 

  66. Kreins AY, Ciancanelli MJ, Okada S, Kong X-F, Ramírez-Alejo N, Kilic SS, et al. Human tyk2 deficiency: Mycobacterial and viral infections without hyper-ige syndrome. J Exp Med. 2015;212(10):1641–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to thank Prof. Stuart Tangye for his critical review of this manuscript. The author is supported by fellowship and grants from the NH&MRC of Australia (1008820; 596813; 1008558; 1060303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cindy S. Ma.

Ethics declarations

Conflict of Interest

C.S.M has received a speaker honorarium from Baxalta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C.S. Human T Follicular Helper Cells in Primary Immunodeficiency: Quality Just as Important as Quantity. J Clin Immunol 36 (Suppl 1), 40–47 (2016). https://doi.org/10.1007/s10875-016-0257-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-016-0257-6

Keywords

Navigation