Skip to main content
Log in

A New Stable Splitting for the Isentropic Euler Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we propose a new way of splitting the flux function of the isentropic compressible Euler equations at low Mach number into stiff and non-stiff parts. Following the IMEX methodology, the latter ones are treated explicitly, while the first ones are treated implicitly. The splitting is based on the incompressible limit solution, which we call reference solution. An analysis concerning the asymptotic consistency and numerical results demonstrate the advantages of this splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anderson, J.D.: Fundamentals of Aerodynamics, \(3^{rd}\) edn. McGraw-Hill, New York (2001)

    Google Scholar 

  2. Ascher, U.M., Ruuth, S., Spiteri, R.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ascher, U.M., Ruuth, S., Wetton, B.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.1, Argonne National Laboratory (2010)

  5. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page. http://www.mcs.anl.gov/petsc (2011)

  6. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: E. Arge, A.M. Bruaset, H.P. Langtangen (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press Boston (1997)

  7. Bispen, G.: IMEX finite volume methods for the shallow water equations. Ph.D. thesis, Johannes Gutenberg-Universität (2015)

  8. Bispen, G., Arun, K., Lukáčová-Medvid’ová, M., Noelle, S.: IMEX large time step finite volume methods for low froude number shallow water flows. Commun. Comput. Phys. 16, 307–347 (2014)

    Article  MathSciNet  Google Scholar 

  9. Boscarino, S.: Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems. SIAM J.Numer. Anal. 45, 1600–1621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boscarino, S.: On an accurate third order implicit-explicit Runge-Kutta method for stiff problems. Appl. Numer. Math. 59, 1515–1528 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boscarino, S., Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35(1), A22–A51 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Hou, S., Shu, C.W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Lin, S.Y.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Shu, C.W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math. Comput. 52, 411–435 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Shu, C.W.: The Runge-Kutta local projection \(p^1\)-discontinuous Galerkin finite element method for scalar conservation laws. RAIRO Math. Model. Numer. Anal. 25, 337–361 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Shu, C.W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. Math. Comput. 141, 199–224 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Cordier, F., Degond, P., Kumbaro, A.: An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations. J. Comput. Phys. 231, 5685–5704 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Crouzeix, M.: Une méthode multipas implicite-explicite pour l’approximation des équations d’évolution paraboliques. Numerische Mathematik 35(3), 257–276 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Degond, P., Jin, S., Liu, J.G.: Mach-number uniform asymptotic-preserving gauge schemes for compressible flows. Bull. Inst. Math. Acad. Sinicia 2(4), 851 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Degond, P., Tang, M.: All speed scheme for the low mach number limit of the isentropic Euler equation. Commun. Comput. Phys. 10, 1–31 (2011)

    Article  MathSciNet  Google Scholar 

  21. Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229(20), 7625–7648 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Giraldo, F., Restelli, M., Läuter, M.: Semi-implicit formulations of the Navier-Stokes equations: application to nonhydrostatic atmospheric modeling. SIAM J. Sci. Comput. 32(6), 3394–3425 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Giraldo, F.X., Restelli, M.: High-order semi-implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model. Int. J. Numer. Methods Fluids 63(9), 1077–1102 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Haack, J., Jin, S., Liu, J.G.: An all-speed asymptotic-preserving method for the isentropic Euler and Navier-Stokes equations. Commun. Comput. Phys. 12, 955–980 (2012)

    Article  MathSciNet  Google Scholar 

  25. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics, Berlin (1991)

    Book  MATH  Google Scholar 

  26. Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225(2), 2016–2042 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Rivista di Matematica della Universita Parma 3, 177–216 (2012)

  29. Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35, 2405–2439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kennedy, C.A., Carpenter, M.H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44, 139–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Klein, R.: Semi-implicit extension of a Godunov-type scheme based on low mach number asymptotics I: one-dimensional flow. J. Comput. Phys. 121, 213–237 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kröner, D.: Numerical Schemes for Conservation Laws. Wiley-Teubner Series Advances in Numerical Mathematics, viii+508 pp. John Wiley & Sons, Ltd., Chichester; B. G. Teubner, Stuttgart (1997)

  34. Kuepper, K., Frank, M., Jin, S.: An asymptotic preserving 2-d staggered grid method for multiscale transport equations. SIAM J. Numer. Anal. 54, 440–461 (2016)

    Article  MathSciNet  Google Scholar 

  35. Müller, A., Behrens, J., Giraldo, F., Wirth, V.: Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2d bubble experiments. J. Comput. Phys. 235, 371–393 (2013)

    Article  MathSciNet  Google Scholar 

  36. Noelle, S., Bispen, G., Arun, K., Lukáčová-Medvid’ová, M., Munz, C.D.: A weakly asymptotic preserving low mach number scheme for the Euler equations of gas dynamics. SIAM J. Sci. Comput. 36, B989–B1024 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pareschi, L., Russo, G.: Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25(1–2), 129–155 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Restelli, M.: Semi-lagrangian and semi-implicit discontinuous Galerkin methods for atmospheric modeling applications. PhD thesis Politecnico di Milano (2007)

  39. Schöberl, J.: Netgen - an advancing front 2d/3d-mesh generator based on abstract rules. Comput. Visualization Sci. 1, 41–52 (1997)

    Article  MATH  Google Scholar 

  40. Schochet, S.: Fast singular limits of hyperbolic PDEs. J. Differ. Equ. 114(2), 476–512 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schütz, J., Kaiser, K.: A new stable splitting for singularly perturbed ODEs. Appl. Numer. Math. 107, 18–33 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schütz, J., Kaiser, K., Noelle, S.: The RS-IMEX splitting for the isentropic Euler equations. In: S. Elgeti, J.W. Simon (eds.) Conference Proceedings of the YIC GACM 2015. Publication Server of RWTH Aachen University. urn:nbn:de:hbz:82-rwth-2015-039806. https://publications.rwth-aachen.de/record/480970/files/ProceedingsYIC-GACM-ACCES.pdf (2015)

  43. Schütz, J., Noelle, S.: Flux splitting for stiff equations: a notion on stability. J. Sci. Comput. 64(2), 522–540 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wesseling, P.: Principles of Computational Fluid Dynamics. Springer Series in Computational Mechanics, vol. 29. Springer, Berlin (2001)

    Book  Google Scholar 

  45. Yelash, L., Müller, A., Lukáčová-Medvid’ová, M., Giraldo, F.X., Wirth, V.: Adaptive discontinuous evolution Galerkin method for dry atmospheric flow. J. Comput. Phys. 268, 106–133 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yong, W.A.: A note on the zero Mach number limit of compressible Euler equations. Proc American Math. Soc. 133(10), 3079–3085 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zakerzadeh, H., Noelle, S.: A note on the stability of implicit-explicit flux splittings for stiff hyperbolic systems. IGPM Preprint Nr. 449 (2016)

Download references

Acknowledgments

The first author has been partially supported by the German Research Foundation (DFG) Project NO 361/3-3, and the University of Hasselt in the framework of the BOF 2016. The authors would like to thank Arun K.R., Georgij Bispen, Rupert Klein, Mária Lukáčová-Medvid’ová, Claus-Dieter Munz and Hamed Zakerzadeh for the discussions and collaborations leading to the RS-IMEX approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Kaiser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, K., Schütz, J., Schöbel, R. et al. A New Stable Splitting for the Isentropic Euler Equations. J Sci Comput 70, 1390–1407 (2017). https://doi.org/10.1007/s10915-016-0286-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0286-6

Keywords

Mathematical Subject Classification

Navigation