Skip to main content
Log in

Return of Excitatory Waves from Field CA1 to the Hippocampal Formation Is Facilitated after Tetanization of Schäffer Collaterals during Sleep

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Current concepts hold that during learning in waking animals, new information is transmitted from the neocortex to the hippocampus, where it leaves a temporary trace in the form of a mosaic of modified synapses. During sleep, reactivation of the neuron population initially activated by the new stimulus has the result that this information is returned to the neocortex, ensuring consolidation of a permanent memory trace. Exchange of information between the neocortex and hippocampal formation is mediated mainly by the entorhinal cortex, whose internal connections, in principle, allow “messages” from the output of the hippocampal formation to return to its inputs. Our experiments in awake and sleeping rabbits demonstrated that waves of excitation can return to hippocampal field CA1 and the dentate gyrus via fibers of the perforant path, these waves having initially entered field CA1 via potentiated synapses of Schäffer collaterals; during sleep, re-entrant waves of excitation reach a maximum and have a high probability of evoking discharges of dentate gyrus neurons. Thus, the new stimulus, potentiating synaptic connections in the hippocampus and, probably, the entorhinal cortex during waking, create conditions for reactivation of the corresponding hippocampal neuron populations during sleep by waves of excitation returning via the entorhinal cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Zosimovskii,V. A. Korshunov, and V. A. Markevich, “Conditions for the appearance in hippocampal field CA1 of a double response to application of single-pulse stimuli to Schäffer collaterals in freely moving rats,” Zh. Vyssh. Nerv. Deyat., 57, No. 2, 210–220 (2007).

    CAS  Google Scholar 

  2. R. Bartesaghi and T. Gessi, “Activation of perforant path neurons to field CA1 by hippocampal projections,” Hippocampus, 13, No. 2, 235–249 (2003).

    Article  PubMed  Google Scholar 

  3. G. Buzsaki, “Two-stage model of memory trace formation: a role for ‘noisy’ brain states,” Neurosci., 31, No. 3, 551–570 (1989).

    Article  CAS  Google Scholar 

  4. M. Y. Cheong, S. H. Yun, I. Mook-Jung, I. Joo, K. Huh, and M.W. Jung, “Cholinergic modulation of synaptic physiology in deep layer entorhinal cortex of the rat,” J. Neurosci. Res., 66, No. 1, 117–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. S. Craig and S. Commins, “Plastic and metaplastic changes in the CA1 and subicular projections to the entorhinal cortex,” Brain Res., 1147, 124–139 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. C. D. Davis, F. L. Jones, and B. E. Derrick, “Novel environments enhance the induction and maintenance of long-term potentiation in the dentate gyrus,” J. Neurosci., 24, No. 29, 6497–6506 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. S. Gais and J. Born, “Declarative memory consolidation: mechanisms acting during human sleep,” Learn. Mem., 11, No. 6, 679–685 (2004).

    Article  PubMed  Google Scholar 

  8. M. E. Hasselmo, “The role of acetylcholine in learning and memory,” Curr. Opin. Neurobiol., 16, No. 6, 710–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. M. E. Hasselmo and B. P. Fehlau, “Differences in time course of ACh and GABA modulation of excitatory synaptic potentials in slices of rat hippocampus,” J. Neurophysiol., 86, No. 4, 1792–1802 (2001).

    CAS  PubMed  Google Scholar 

  10. M. E. Hasselmo and E. Schnell, “Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology,” J. Neurosci., 14, No. 6, 3898–3914 (1994).

    CAS  PubMed  Google Scholar 

  11. T. L. Ivanco and R. J. Racine, “Long-term potentiation in the reciprocal corticohippocampal and corticocortical pathways in the chronically implanted, freely moving rat,” Hippocampus, 10, No. 2, 143–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. A. Kemp and D. Manahan-Vaughan, “Hippocampal long-term depression and long-term potentiation encode different aspects of novelty acquisition,” Proc. Natl. Acad. Sci. USA, 101, No. 21, 8192–8197 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. F. Kloosterman, T. Van Haeftten, and F. H. da Silva, “Two reentrant pathways in the hippocampal-entorhinal system,” Hippocampus, 14, No. 8, 1026–1039 (2004).

    Article  PubMed  Google Scholar 

  14. P. Lavenex and D. G. Amaral, “Hippocampal-neocortical interaction: a hierarchy of associativity,” Hippocampus, 10, 420–430 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. M. G. Lee, O. K. Hassani, A. Alonso, and B. E. Jones, “Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep,” J. Neurosci., 25, No. 17, 4365–4369 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. I. Lee and R. P. Kesner, “Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning,” Hippocampus, 14, No. 3, 301–310 (2004).

    Article  PubMed  Google Scholar 

  17. L. S. Leung, B. Shen, N. Rajakumar, and J. Ma, “Cholinergic activity enhances hippocampal long-term potentiation in CA1 during waking in rats,” J. Neurosci., 23, No. 28, 9297–9304 (2003).

    CAS  PubMed  Google Scholar 

  18. F. Marrosu, C. Portas, M. S. Mascia, M. A. Casu, M. Fa, M. Giagheddu, A. Imperato, and G. L. Gessa, “Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats,” Brain Res., 671, No. 2, 329–332 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. R. G. Morris, “Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas,” Eur. J. Neurosci., 23, No. 11, 2829–2846 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. M. Remondes and E. M. Schuman, “Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory,” Nature, 431, No. 7009, 699–703 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. S. Ribeiro, D. Gervasoni, E. S. Soares,Y. Zhou, S.-C. Lin, J. Pantoja, M. Lavine, and M. A. L. Nicolelis, “Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas,” PLoS Biol., 2, No. 1, 0126–0137 (2004).

    Article  Google Scholar 

  22. S. Ribeiro and M. A. L. Nicolelis, “Reverberation, storage, and postsynaptic propagation of memories during sleep,” Learn. Mem., 11, No. 6, 686–696 (2004).

    Article  PubMed  Google Scholar 

  23. M. Richter, T. Schilling, and W. Muller, “Muscarinic control of intracortical connections to layer II in rat entorhinal cortex slice,” Neurosci. Lett., 273, No. 3, 2002–202 (1999).

    Article  Google Scholar 

  24. H. Wang, Y. Hu, and J. Z. Tsien, “Molecular and systems mechanisms of memory consolidation and storage,” Prog. Neurobiol., 79, No. 3, 123–135 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. J. R. Whitlock, A. J. Heynen, M. G. Shuler, and M. F. Bear, “Learning induces long-term potentiation in the hippocampus,” Science, 313, No. 5790, 1093–1097 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. G. M. Wittenberg, M. R. Sullivan, and J. Z. Tsien, “Synaptic reentry reinforcement based network model for long-term memory consolidation,” Hippocampus, 12, No. 5, 637–647 (2002).

    Article  PubMed  Google Scholar 

  27. M. P. Witter and E. I. Moser, “Spatial representation and the architecture of the entorhinal cortex,” Trends Neurosci., 29, No. 12, 671–678 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. S. Yang, S. D. Lee, C. H. Chung, M. Y. Cheong, C. J. Lee, and M. W. Jung, “Long-term synaptic plasticity in deep layer-originated associational projections to superficial layers of rat entorhinal cortex,” Neurosci., 127, No. 4, 805–812 (2004).

    Article  CAS  Google Scholar 

  29. S. H. Yun, M. Y. Cheong, I. Mook-Jung, K. Huh, C. Lee, and M. W. Jung, “Cholinergic modulation of synaptic transmission and plasticity in entorhinal cortex and hippocampus of the rat,” Neurosci., 97, No. 4, 671–676 (2000).

    Article  CAS  Google Scholar 

  30. S. H. Yun, I. Mook-Jung, and M. W. Jung, “Variation in effective stimulus patterns for induction of long-term potentiation across different layers of rat entorhinal cortex,” J. Neurosci., 22, No. 5, Rc214, 105 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zosimovskii.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 59, No. 1, pp. 87–97, January–February, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zosimovskii, V.A., Korshunov, V.A. Return of Excitatory Waves from Field CA1 to the Hippocampal Formation Is Facilitated after Tetanization of Schäffer Collaterals during Sleep. Neurosci Behav Physi 40, 315–323 (2010). https://doi.org/10.1007/s11055-010-9258-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-010-9258-8

Key words

Navigation