Skip to main content

Advertisement

Log in

The Wnt Antagonist, Dickkopf-1, as a Target for the Treatment of Neurodegenerative Disorders

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The canonical Wnt pathway contributes to the regulation of neuronal survival and homeostasis in the CNS. Recent evidence suggests that an increased expression of Dickkopf-1 (Dkk-1), a secreted protein that negatively modulates the canonical Wnt pathway, is causally related to processes of neurodegeneration in a number of CNS disorders, including Alzheimer’s disease (AD), brain ischemia and temporal lobe epilepsy (TLE). Dkk-1 induction precedes neuronal death in cellular and animal models of excitotoxicity, β-amyloid toxicity, transient global ischemia, and kainate-induced epilepsy. In addition, Dkk-1, which is barely visible in the healthy brain, is strongly induced in brain tissue from AD patients or from patients with TLE associated with hippocampal sclerosis. These data raise the attractive possibility that Dkk-1 antagonists or neutralizing antibodies behave as neuroprotective agents by rescuing the activity of the canonical Wnt pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dale TC (1998) Signal transduction by the Wnt family of ligands. Biochem J 329:209–223

    CAS  PubMed  Google Scholar 

  2. He X, Semenov M, Tamai K et al (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131:1663–1677

    Article  CAS  PubMed  Google Scholar 

  3. Miller JR, Hocking AM, Brown JD et al (1999) Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 18:7860–7872

    Article  CAS  PubMed  Google Scholar 

  4. Prunier C, Hocevar BA, Howe PH (2004) Wnt signaling: physiology and pathology. Growth Factors 22:141–150

    Article  CAS  PubMed  Google Scholar 

  5. Miller JR (2002) The Wnts. Genome Biol 3(1):3001.1–3001.15

    Google Scholar 

  6. Moon RT, Bowerman B, Boutros M et al (2002) The promise and perils of Wnt signaling through β-catenin. Science 296:1644–1646

    Article  CAS  PubMed  Google Scholar 

  7. Mlodzik M (2002) Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet 18:564–571

    Article  CAS  PubMed  Google Scholar 

  8. Kühl M, Sheldahl LC, Park M et al (2000) The Wnt/Ca2+pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16:279–283

    Article  PubMed  Google Scholar 

  9. Tamai K, Semenov M, Kato Y et al (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407:530–535

    Article  CAS  PubMed  Google Scholar 

  10. Wehrli M, Dougan ST, Caldwell K et al (2000) Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407:527–530

    Article  CAS  PubMed  Google Scholar 

  11. Liu C, Li Y, Semenov M et al (2002) Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–847

    Article  CAS  PubMed  Google Scholar 

  12. Aberle H, Bauer A, Stappert J et al (1997) Beta-catenin is a target for the ubiquitin–proteasome pathway. EMBO J 16:3797–3804

    Article  CAS  PubMed  Google Scholar 

  13. Willert K, Nusse R (1998) Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 8:95–102

    Article  CAS  PubMed  Google Scholar 

  14. Willert K, Jones KA (2006) Wnt signaling: is the party in the nucleus? Genes Dev 20:1394–1404

    Article  CAS  PubMed  Google Scholar 

  15. Salinas PC (1999) Wnt factors in axonal remodelling and synaptogenesis. Biochem Soc Symp 65:101–109

    CAS  PubMed  Google Scholar 

  16. Yu X, Malenka RC (2003) Beta-catenin is critical for dendritic morphogenesis. Nat Neurosci 6:1169–1177

    Article  CAS  PubMed  Google Scholar 

  17. Murase S, Mosser E, Schuman EM (2002) Depolarization drives beta-catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35:91–105

    Article  CAS  PubMed  Google Scholar 

  18. Niehrs C (2006) Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25:7469–7481

    Article  CAS  PubMed  Google Scholar 

  19. Krupnik VE, Sharp JD, Jiang C et al (1999) Functional and structural diversity of the human Dickkopf gene family. Gene 238:301–313

    Article  CAS  PubMed  Google Scholar 

  20. Brott BK, Sokol SY (2002) Regulation of Wnt/LRP signalling by distinct domains of Dickkopf proteins. Mol Cell Biol 22:6100–6110

    Article  CAS  PubMed  Google Scholar 

  21. Diep DB, Hoen N, Backman M et al (2004) Characterisation of the Wnt antagonists and their response to conditionally activated Wnt signalling in the developing mouse forebrain. Brain Res Dev Brain Res 153:261–270

    Article  CAS  PubMed  Google Scholar 

  22. Grotewold L, Ruther U (2002) The Wnt antagonist Dickkopf-1 is 675 regulated by Bmp signaling and c-Jun and modulates programmed cell death. EMBO J 21:966–975

    Article  CAS  PubMed  Google Scholar 

  23. Glinka A, Wu W, Delius H et al (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362

    Article  CAS  PubMed  Google Scholar 

  24. Zorn AM (2001) Wnt signalling: antagonistic Dickkopfs. Curr Biol 11:R592–R595

    Article  CAS  PubMed  Google Scholar 

  25. Mao B, Niehrs C (2003) Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 302:179–183

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Shou J, Chen X (2000) Dickkopf-1, an inhibitor of the Wnt signaling pathway, is induced by p53. Oncogene 19:1843–1848

    Article  CAS  PubMed  Google Scholar 

  27. Slee EA, O’Connor DJ, Lu X (2004) To die or not to die: how does p53 decide? Oncogene 23:2809–2818

    Article  CAS  PubMed  Google Scholar 

  28. Choi DW (1994) Calcium and excitotoxic neuronal injury. Ann N Y Acad Sci 747:162–171

    CAS  PubMed  Google Scholar 

  29. Zipfel GJ, Babcock DJ, Lee JM et al (2000) Neuronal apoptosis after CNS injury: the roles of glutamate and calcium. J Neurotrauma 17:857–869

    CAS  PubMed  Google Scholar 

  30. Bruno V, Battaglia G, Copani A et al (2001) Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab 21:1013–1033

    Article  CAS  PubMed  Google Scholar 

  31. Cappuccio I, Calderone A, Busceti CL et al (2005) Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is required for the development of ischemic neuronal death. J Neurosci 25:2647–2657

    Article  CAS  PubMed  Google Scholar 

  32. Jope RS (2003) Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci 24:441–443

    Article  CAS  PubMed  Google Scholar 

  33. Scali C, Caraci F, Gianfriddo M et al (2006) Inhibition of Wnt signaling, modulation of Tau phosphorylation and induction of neuronal cell death by DKK1. Neurobiol Dis 24:254–265

    Article  CAS  PubMed  Google Scholar 

  34. Oddo S, Caccamo A, Kitazawa M et al (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070

    Article  CAS  PubMed  Google Scholar 

  35. Blurton-Jones M, Laferla FM (2006) Pathways by which Abeta facilitates tau pathology. Curr Alzheimer Res 3:437–448

    Article  CAS  PubMed  Google Scholar 

  36. Takashima A, Honda T, Yasutake K et al (1998) Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25–35) enhances phosphorylation of tau in hippocampal neurons. J Neurosci Res 31:317–323

    Article  CAS  Google Scholar 

  37. Takashima A (2006) GSK-3 is essential in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 9:309–317

    CAS  PubMed  Google Scholar 

  38. Zhou J, Liyanage U, Medina M et al (1997) Presenilin 1 interaction in the brain with a novel member of the Armadillo family. NeuroReport 8:1489–1494

    Article  CAS  PubMed  Google Scholar 

  39. Takashima A, Murayama M, Murayama O et al (1998) Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau. Proc Natl Acad Sci USA 95:9637–9641

    Article  CAS  PubMed  Google Scholar 

  40. Kang DE, Soriano S, Xia X et al (2002) Presenilin couples the paired phosphorylation of beta-catenin independent of axin: implications for beta-catenin activation in tumorigenesis. Cell 110:751–762

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Z, Hartmann H, Do VM et al (1998) Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395:698–702

    Article  CAS  PubMed  Google Scholar 

  42. De Ferrari GV, Moon RT (2006) The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene 25:7545–7553

    Article  PubMed  CAS  Google Scholar 

  43. De Ferrari GV, Inestrosa NC (2000) Wnt signaling function in Alzheimer’s disease. Brain Res Brain Res Rev 33:1–12

    Article  PubMed  Google Scholar 

  44. De Ferrari GV, Chacón MA, Barría MI et al (2003) Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by beta-amyloid fibrils. Mol Psychiatry 8:195–208

    Article  PubMed  CAS  Google Scholar 

  45. Copani A, Condorelli F, Caruso A et al (1999) Mitotic signaling by beta-amyloid causes neuronal death. FASEB J 13:2225–2234

    CAS  PubMed  Google Scholar 

  46. Copani A, Caraci F, Hoozemans JJ et al (2007) The nature of the cell cycle in neurons: focus on a “non-canonical” pathway of DNA replication causally related to death. Biochim Biophys Acta 1772:409–412

    CAS  PubMed  Google Scholar 

  47. Caricasole A, Copani A, Caraci F et al (2004) Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J Neurosci 24:6021–6027

    Article  CAS  PubMed  Google Scholar 

  48. De Ferrari GV, Papassotiropoulos A, Biechele T et al (2007) Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer’s disease. Proc Natl Acad Sci USA 104:9434–9439

    Article  PubMed  CAS  Google Scholar 

  49. Biagioni F, Mastroiacovo F, Busceti CL et al (2007) Induction of transient focal brain ischemia induces the expression of the Wnt inhibitor, Dickkopf-1, in neurons of the perifocal regions in rats. Soc Neurosci Abstr Program No. 493.22

  50. Honavar M, Meldrum BS (1997) Epilepsy. In: Graham DI, Lantos PI (eds) Greenfield’s neuropathology, 6th edn. Arnold, London, pp 931–971

    Google Scholar 

  51. Busceti CL, Biagioni F, Aronica E et al (2007) Induction of the Wnt inhibitor, Dickkopf-1, is associated with neurodegeneration related to temporal lobe epilepsy. Epilepsia 48:694–705

    Article  CAS  PubMed  Google Scholar 

  52. Busceti CL, Biagioni F, Riozzi et al (2007) 3,4-Methylendioxymethamphetamine (ecstasy) induces the expression of the wnt inhibitor, dickkopf-1, and tau protein phosphorylation in the mouse hippocampus. Soc Neurosci Abstr Program No. 66.4

  53. Zakzanis KK, Campbell Z (2006) Memory impairment in now abstinent MDMA users and continued users: a longitudinal follow-up. Neurology 66:740–741

    Article  PubMed  Google Scholar 

  54. Wu D, Zhang Y, Liu P et al (2005) Compositions and methods for bone formation and remodeling. US Patent 2005/0196349

  55. Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoël MJ et al (2001) Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene 20:252–259

    Article  CAS  PubMed  Google Scholar 

  56. Caraci F, Copani A, Battaglia G et al (2006) A dual mechanism of neuroprotection by transforming growth factor-β1 against β-amyloid neurotoxicity. Soc Neurosci Abstr Program No. 171.4

  57. Torres Aleman I (2005) Role of insulin-like growth factors in neuronal plasticity and neuroprotection. Adv Exp Med Biol 567:243–258

    Article  PubMed  Google Scholar 

  58. Vivien D, Ali C (2006) Transforming growth factor-beta signalling in brain disorders. Cytokine Growth Factor Rev 17:121–128

    Article  CAS  PubMed  Google Scholar 

  59. Huang HC, Klein PS (2006) Multiple roles for glycogen synthase kinase-3 as a drug target in Alzheimer’s disease. Curr Drug Targets 7:1389–1397

    CAS  PubMed  Google Scholar 

  60. Wada A, Yokoo H, Yanagita T et al (2005) Lithium: potential therapeutics against acute brain injuries and chronic neurodegenerative diseases. J Pharmacol Sci 99:307–321

    Article  CAS  PubMed  Google Scholar 

  61. Nunes PV, Forlenza OV, Gattaz WF (2007) Lithium and risk for Alzheimer’s disease in elderly patients with bipolar disorder. Br J Psychiatry 190:359–360

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Caraci.

Additional information

Special issue article in honor of Anna Maria Giuffrida-Stella.

Agata Copani and Ferdinando Nicoletti—Co-senior authors.

Filippo Caraci—PhD Program in Neuropharmacology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caraci, F., Busceti, C., Biagioni, F. et al. The Wnt Antagonist, Dickkopf-1, as a Target for the Treatment of Neurodegenerative Disorders. Neurochem Res 33, 2401–2406 (2008). https://doi.org/10.1007/s11064-008-9710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9710-0

Keywords

Navigation