Skip to main content
Log in

1H NMR Relaxometry in Natural Humous Soil Samples: Insights in Microbial Effects on Relaxation Time Distributions

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

1H NMR relaxometry is applied for the investigation of pore size distributions in geological substrates. The transfer to humous soil samples requires the knowledge of the interplay between soil organic matter, microorganisms and proton relaxation. The goal of this contribution is to give first insights in microbial effects in the 1H NMR relaxation time distribution in the course of hydration of humous soil samples. We observed the development of the transverse relaxation time distribution of the water protons after addition of water to air dried soil samples. Selected samples were treated with cellobiose to enhance microbial activity. Besides the relaxation time distribution, the respiratory activity and the total cell counts were determined as function of hydration time.

Microbial respiratory activities were 2–15 times higher in the treated samples and total cell counts increased in all samples from 1×109 to 5×109 cells g−1 during hydration. The results of 1H NMR relaxometry showed tri-, bi- and mono-modal relaxation time distributions and shifts of peak relaxation times towards lower relaxation times of all investigated soil samples during hydration. Furthermore, we found lower relaxation times and merging of peaks in soil samples with higher microbial activity. Dissolution and hydration of cellobiose had no detectable effect on the relaxation time distributions during hydration. We attribute the observed shifts in relaxation time distributions to changes in pore size distribution and changes in spin relaxation mechanisms due to dissolution of organic and inorganic substances (e.g. Fe3+, Mn2+), swelling of soil organic matter (SOM), production and release of extracellular polymeric substances (EPS) and bacterial association within biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

1H NMR:

Proton Nuclear Magnetic Resonance

ρ 0 :

initial mean surface relaxivity

\(d_{\rm pore}={4V_0\over S_0}\) :

pore diameter of a cylindrical pore (Hinedi et al., 1997)

\({\overline T}_2\) :

initial mean relaxation time

\(\rho_i={\lambda\over T_{iS}}\) :

surface relaxivity

d 0 :

initial mean pore diameter; λ–layer thickness, in which TiS takes place

DAPI-:

4′,6-diamidino-2-phenylindol

d BET :

mean pore diameter estimated from BET data

DOC:

Dissolved Organic Carbon

EPS:

extracellular polymeric substances

PGA:

polygalacturonic acid

S 0 :

water covered pore surface

S BET :

specific surface area estimated from BET data

SOM:

soil organic matter

t :

hydration time [days], τ–time constant of the first order process [days]

T i :

relaxation time of the longitudinal (i=1) or transverse (i=2) relaxation of proton magnetization

T iB :

bulk relaxation time

T iS :

surface relaxation time

V 0 :

water filled pore volume

Y :

replacement character for the peak relaxation time [ms]

Y :

peak relaxation time for infinite hydration time

Y 0 :

initial value for t=0.

References

  • S Altfelder T Streck J Richter (1999) ArticleTitleEffect of air-drying on sorption kinetics of the herbicide chlortoluron in soil J. Environ. Qual. 28 1154–1161 Occurrence Handle1:CAS:528:DyaK1MXksFGkt7c%3D

    CAS  Google Scholar 

  • E P Barrett L G Joyner P P Halenda (1951) ArticleTitleThe determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms J. Am. Chem. Soc. 73 373–380 Occurrence Handle10.1021/ja01145a126 Occurrence Handle1:CAS:528:DyaG3MXjsVygsg%3D%3D

    Article  CAS  Google Scholar 

  • E E Beuling D Dusschoten ParticleVan P Lens J C Heuvel ParticleVan Den H As ParticleVan S P P Ottengraf (1998) ArticleTitleCharacterization of the diffusive properties of biofilms using pulsed field gradient-nuclear magnetic resonance Biotech. Bioeng. 60 283–291 Occurrence Handle10.1002/(SICI)1097-0290(19981105)60:3<283::AID-BIT3>3.0.CO;2-D Occurrence Handle1:CAS:528:DyaK1cXmsVamtbo%3D

    Article  CAS  Google Scholar 

  • U Boeckelmann U Szewzyk E Grohmann (2003) ArticleTitleA new enzymatic method for the detachment of particle associated soil bacteria J. Microbiol. Meth. 55 201–211

    Google Scholar 

  • T R Bryar C J Daughney R J Knight (2000) ArticleTitleParamagnetic effects of iron(III) species on nuclear magnetic relaxation of fluid protons in porous media J. Magn. Reson. 142 74–85 Occurrence Handle10.1006/jmre.1999.1917 Occurrence Handle1:CAS:528:DC%2BD3cXotlOk Occurrence Handle10617437

    Article  CAS  PubMed  Google Scholar 

  • S B Chapman (1971) ArticleTitleSimple conductimetric soil respirometer for field use Oikos 22 348–353 Occurrence Handle1:CAS:528:DyaE38Xht1Gks74%3D

    CAS  Google Scholar 

  • C Chenu (1993) ArticleTitleClay- or sand-polysaccharide associations as models for the interface between microorganisms and soil: water related properties and microstructure Geoderma 56 143–156 Occurrence Handle10.1016/0016-7061(93)90106-U Occurrence Handle1:CAS:528:DyaK3sXlsF2htL4%3D

    Article  CAS  Google Scholar 

  • F D’Orazio S Bhattacharja W P Halperin R Gerhardt (1989) ArticleTitleEnhanced self-diffusion of water in restricted geometry Phys. Rev. Lett. 63 43–46 Occurrence Handle1:CAS:528:DyaL1MXls1Whsr4%3D Occurrence Handle10040428

    CAS  PubMed  Google Scholar 

  • J H Boer Particlede B C Lippens B G Linsen J C P Broekhoff A Heuvel Particlevan den T J Osinga (1966) ArticleTitlet-curve of multimolecular nitrogen adsorption J. Colloid Interface Sci. 21 405–414

    Google Scholar 

  • A Delville M Letellier (1995) ArticleTitleStructure and dynamics of simple liquids in heterogeneous condition: an NMR study of the clay-water interface Langmuir 11 1361–1367 Occurrence Handle10.1021/la00004a050 Occurrence Handle1:CAS:528:DyaK2MXkvFGiur8%3D

    Article  CAS  Google Scholar 

  • N Fierer J P Schimel (2003) ArticleTitleA proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil Soil Sci. Soc. Am. J. 67 798–805 Occurrence Handle1:CAS:528:DC%2BD3sXktVGitrY%3D

    CAS  Google Scholar 

  • H-C Flemming J Wingender (2000) ArticleTitleExtracellular polymeric substances (EPS)-the construction material for biofilms Vom Wasser 94 245–266 Occurrence Handle1:CAS:528:DC%2BD38XotVGrsrs%3D

    CAS  Google Scholar 

  • C L Glaves P J Davis D P Gallegos D M Smith (1988) ArticleTitlePore structure analysis of coals via low-field spin-lattice relaxation measurements Energ. Fuel 2 662–668 Occurrence Handle1:CAS:528:DyaL1cXkvFGktrs%3D

    CAS  Google Scholar 

  • Gregg S J, Sing K S W 1982 Adsorption, Surface Area and Porosity. 2nd ed. 303 pp

  • P D Hallett I M Young (1999) ArticleTitleChanges to water repellence of soil aggregates caused by substrate-induced microbial activity Eur. J. Soil Sci. 50 35–40 Occurrence Handle10.1046/j.1365-2389.1999.00214.x

    Article  Google Scholar 

  • L J Halverson T M Jones M K Firestone (2000) ArticleTitleRelease of intracellular solutes by four soil bacteria exposed to dilution stress Soil Sci. Soc. Am. J. 64 1630–1637 Occurrence Handle1:CAS:528:DC%2BD3cXntlGmurk%3D

    CAS  Google Scholar 

  • B P Hills (1992) ArticleTitleThe proton exchange cross-relaxation model of water relaxation in biopolymer systems Mol. Phys. 76 489–508 Occurrence Handle1:CAS:528:DyaK38XkvVGlsr8%3D

    CAS  Google Scholar 

  • B P Hills C Cano P S Belton (1991) ArticleTitleProton NMR relaxation studies of aqueous polysaccharide systems Macromolecules 24 2944–2950 Occurrence Handle10.1021/ma00010a047 Occurrence Handle1:CAS:528:DyaK3MXitVOlsbw%3D

    Article  CAS  Google Scholar 

  • B P Hills K M Wright P S Belton (1989) ArticleTitleNMR studies of water proton relaxation in Sephadex bead suspensions Mol. Phys. 67 193–208 Occurrence Handle1:CAS:528:DyaL1MXltVeiu7Y%3D

    CAS  Google Scholar 

  • Z R Hinedi A C Chang M A Anderson D B Borchardt (1997) ArticleTitleQuantification of microporosity by nuclear magnetic resonance relaxation of water imbibed in porous media Water Resour. Res. 33 2697–2704 Occurrence Handle10.1029/97WR02408 Occurrence Handle1:CAS:528:DyaK2sXotVegtbk%3D

    Article  CAS  Google Scholar 

  • R Holly H Peemoeller C Choi M M Pintar (1998) ArticleTitleProton rotating frame spin-lattice relaxation study of slow motion of pore water J. Chem. Phys. 108 4183–4188 Occurrence Handle10.1063/1.475816 Occurrence Handle1:CAS:528:DyaK1cXhsVyqtbY%3D

    Article  CAS  Google Scholar 

  • W E Kenyon (1997) ArticleTitlePetrophysical principles of applications of NMR logging The Log Analyst 38 21–46

    Google Scholar 

  • W E Kenyon J A Kolleeny (1995) ArticleTitleNMR surface relaxivity of calcite with adsorbed Mn2+ J. Colloid Interface Sci. 170 502–514 Occurrence Handle10.1006/jcis.1995.1129 Occurrence Handle1:CAS:528:DyaK2MXksVKhuro%3D

    Article  CAS  Google Scholar 

  • H Kirchmann M H Gerzabek (1999) ArticleTitleRelationship between soil organic matter and micropores in a long-term experiment at Ultuna, Sweden J. Plant Nutr. Soil Sci. 162 493–498 Occurrence Handle10.1002/(SICI)1522-2624(199910)162:5<493::AID-JPLN493>3.0.CO;2-S Occurrence Handle1:CAS:528:DyaK1MXms1aku7o%3D

    Article  CAS  Google Scholar 

  • R L Kleinberg W E Kenyon P P Mitra (1994) ArticleTitleMechanism of NMR relaxation of fluids in rock J. Magn. Reson Ser. A 108 206–214 Occurrence Handle10.1006/jmra.1994.1112 Occurrence Handle1:CAS:528:DyaK2cXltlyjtLg%3D

    Article  CAS  Google Scholar 

  • P Lens F Vergeldt G Lettinga H As ParticleVan (1999) ArticleTitleH NMR characterisation of the diffusional properties of methanogenic granular sludge Water Sci. Technol. 39 187–194 Occurrence Handle10.1016/S0273-1223(99)00167-5 Occurrence Handle1:CAS:528:DyaK1MXjvFyisbo%3D

    Article  CAS  Google Scholar 

  • A Matteson J P Tomanic M M Herron D F Allen W E Kenyon (2000) ArticleTitleNMR relaxation of clay/brine mixtures SPE Reserv. Eval. Eng. 3 408–413 Occurrence Handle1:CAS:528:DC%2BD3cXnvFyqtLo%3D

    CAS  Google Scholar 

  • S Meiboom D Gill (1958) ArticleTitleModified spin-echo method for measuring nuclear relaxation times Rev. Sci. Instrum. 29 688–691 Occurrence Handle10.1063/1.1716296 Occurrence Handle1:CAS:528:DyaF3cXosFWitQ%3D%3D

    Article  CAS  Google Scholar 

  • C Mikutta F Lang M Kaupenjohann (2004) ArticleTitleSoil organic matter clogs mineral pores: evidence from 1H-NMR and N2 adsorption Soil Sci. Soc. Am. J. 68 1853–1862 Occurrence Handle1:CAS:528:DC%2BD2cXpvVCktbg%3D

    CAS  Google Scholar 

  • Mills A L, Powelson D K 1996 Bacterial interactions with surfaces in soils. Bacterial Adhesion. In Molecular and Ecological Diversity of Bacterial Adhesion. Ed. M. Fletcher. pp. 25–57. Wiley-Liss, Inc

  • M Regier K Knoerzer G G Badolato (2004) ArticleTitleApplications of magnetic resonance for investigating water, temperature, and pore distributions in food process engineering Chem-Ing-Tech. 76 433–439 Occurrence Handle1:CAS:528:DC%2BD2cXjtl2isb8%3D

    CAS  Google Scholar 

  • S P Roberts P J McDonald T Pritchard (1995) ArticleTitleA bulk and spatially resolved NMR relaxation study of sandstone rock plugs J. Magn. Reson Ser. A 116 189–195 Occurrence Handle1:CAS:528:DyaK2MXosFWgsrs%3D

    CAS  Google Scholar 

  • J Rouquerol D Avnir C W Fairbridge D H Everett J H Haynes N Pernicone J D F Ramsay K S W Sing K K Unger (1994) ArticleTitleRecommendations for the characterization of porous solids Pure Appl. Chem. 66 1739–1758 Occurrence Handle1:CAS:528:DyaK2cXmtFeltrc%3D

    CAS  Google Scholar 

  • G E Schaumann J Hurrass M Müller W Rotard (2005a) Swelling of organic matter in soil and peat samples: insights from proton relaxation, water absorption and PAH extraction E A Ghabbour G Davies (Eds) Humic Substances: Nature’s Most Versatile Materials Taylor and Francis, Inc New York 101–117

    Google Scholar 

  • G E Schaumann E Hobley J Hurrass W Rotard (2005b) ArticleTitleH-NMR Relaxometry to monitor wetting and swelling kinetics in high organic matter soils Plant Soil 275 1–20 Occurrence Handle10.1007/s11104-005-1708-7 Occurrence Handle1:CAS:528:DC%2BD2MXht1enurnJ

    Article  CAS  Google Scholar 

  • T R Todoruk C H Langford A Kantzas (2003) ArticleTitlePore-scale redistribution of water during wetting of air-dried soils as studied by Low-Field NMR Relaxometry Environ. Sci. Technol. 37 2707–2713 Occurrence Handle10.1021/es025967c Occurrence Handle1:CAS:528:DC%2BD3sXjsVCitbg%3D Occurrence Handle12854709

    Article  CAS  PubMed  Google Scholar 

  • W J Ullman D L Kirchman S A Welch P Vandevivere (1996) ArticleTitleLaboratory evidence for microbially mediated silicate mineral dissolution in nature Chem. Geol. 132 11–17 Occurrence Handle10.1016/S0009-2541(96)00036-8 Occurrence Handle1:CAS:528:DyaK28XmvFarsLY%3D

    Article  CAS  Google Scholar 

  • P Vandevivere P Baveye (1992) ArticleTitleEffect of bacterial extracellular polymers on the saturated hydraulic conductivity of sand columns Appl. Environ. Microbiol. 58 1690–1698 Occurrence Handle1:CAS:528:DyaK38Xis1ais7o%3D Occurrence Handle1622240

    CAS  PubMed  Google Scholar 

  • S A Welch W J Ullman (1999) ArticleTitleThe effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 °C and 35 °C Geochim. Cosmochim. Acta 63 3247–3259 Occurrence Handle1:CAS:528:DyaK1MXotVCksrk%3D

    CAS  Google Scholar 

  • D C Wolf T H Dao H D Scott T L Lavy (1989) ArticleTitleInfluence of sterilization methods on selected soil microbiological, physical, and chemical properties J. Environ. Qual. 18 39–44 Occurrence Handle1:CAS:528:DyaL1MXhtlChtLo%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele E. Schaumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaeger, F., Grohmann, E. & Schaumann, G.E. 1H NMR Relaxometry in Natural Humous Soil Samples: Insights in Microbial Effects on Relaxation Time Distributions. Plant Soil 280, 209–222 (2006). https://doi.org/10.1007/s11104-005-3035-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-005-3035-4

Keywords

Navigation