Skip to main content

Advertisement

Log in

Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The basidiomycete fungus Piriformospora indica colonizes roots of a broad range of mono- and dicotyledonous plants. It confers enhanced growth, improves resistance against biotic and tolerance to abiotic stress, and enhances grain yield in barley. To analyze mechanisms underlying P. indica-induced improved grain yield in a crop plant, the influence of different soil nutrient levels and enhanced biotic stress were tested under outdoor conditions. Higher grain yield was induced by the fungus independent of different phosphate and nitrogen fertilization levels. In plants challenged with the root rot-causing fungus Fusarium graminearum, P. indica was able to induce a similar magnitude of yield increase as in unchallenged plants. In contrast to the arbuscular mycorrhiza fungus Glomus mosseae, total phosphate contents of host plant roots and shoots were not significantly affected by P. indica. On the other hand, barley plants colonised with the endophyte developed faster, and were characterized by a higher photosynthetic activity at low light intensities. Together with the increased root formation early in development these factors contribute to faster development of ears as well as the production of more tillers per plant. The results indicate that the positive effect of P. indica on grain yield is due to accelerated growth of barley plants early in development, while improved phosphate supply—a central mechanism of host plant fortification by arbuscular mycorrhizal fungi—was not observed in the P. indica-barley symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achatz B (2006) Untersuchungen zum Einfluss des Wurzelendophyten Piriformospora indica auf das Wachstum von Hordeum vulgare, die Resistenz gegen Blumeria graminis f.sp. hordei und die Genexpression in den Blättern. Philipps-University Marburg, Germany, PhD thesis. http://archiv.ub.uni-marburg.de/diss/z2006/0415

    Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel K-H, Schäfer P, Schwarczinger I, Zuccaro A, Skoczowski A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–10

    Article  PubMed  CAS  Google Scholar 

  • Barazani O, Benderoth M, Groten K, Kuhlemeier C, Baldwin IT (2005) Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 146:234–243

    Article  PubMed  Google Scholar 

  • Borgmann F (2000) Ertragsbildung der Kulturpflanzen. In: Entrup NL, Oehmichen J (eds) Lehrbuch des Pflanzenbaus. Verlag Thomas Mann, Gelsenkirchen, pp 337–355

    Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82:3057–3068

    Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  PubMed  CAS  Google Scholar 

  • Bütehorn B, Rhody D, Franken P (2000) Isolation and characterisation of Pitef1 encoding the translation elongation factor EF-1α of the root Endophyte Piriformospora indica. Plant Biol 2:687–692

    Article  Google Scholar 

  • Caravaca F, Diaz E, Barea JM, Azcón-Aguilar C, Roldán A (2003) Photosynthetic and transpiration rates of Olea europaea subsp. sylvestris and Rhamnus lycioides as affected by water deficit and mycorrhiza. Biol Plant 46:637–639

    Article  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant-Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Dehne HW (1982) Interactions between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathol 72:1115–1119

    Google Scholar 

  • Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci USA 103:18450–18457

    Article  PubMed  CAS  Google Scholar 

  • Deshmukh S, Kogel KH (2007) Piriformospora indica protects barley from root rot caused by Fusarium graminearum. J Plant Dis Prot 114:263–268

    Google Scholar 

  • Druege U, Baltruschat H, Franken P (2007) Piriformospora indica promotes adventitious root formation in cuttings. Scient Horticult 112:422–426

    Article  Google Scholar 

  • Fay P, Mitchell DT, Osborne BA (1996) Photosynthesis and nutrient-use efficiency of barley in response to low arbuscular mycorrhizal colonization and addition of phosphorus. New Phytol 132:425–433

    Article  CAS  Google Scholar 

  • Gericke S, Kurmies B (1952) Colorimetrische Bestimmung der Phosphorsäure mit Vanadat-Molybdat (Vm-Methode). Fresenius Z f Anal Chem 137:15–22

    Article  CAS  Google Scholar 

  • Gernns H, von Alten H, Poehling HM (2001) Arbuscular mycorrhiza increased the activity of a biotrophic leaf pathogen—is a compensation possible? Mycorrhiza 11:237–243

    Article  CAS  Google Scholar 

  • Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688–698

    Article  PubMed  CAS  Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ (2005) Signalling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  PubMed  CAS  Google Scholar 

  • Humbeck K, Kloppstech K, Krupinska K (1994) Expression of early light-inducible proteins in flag leaves of field-grown barley. Plant Physiol 105:1217–1222

    PubMed  CAS  Google Scholar 

  • Karandashov V, Nagy R, Wegmüller S, Amrhein N, Bucher M (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 101:6285–6290

    Article  PubMed  CAS  Google Scholar 

  • Kormanik PP, McGraw AC (1982) In: Schenck NC (ed) Methods and principles of mycorrhizal research. Am. Phytopathol. Soc., St. Paul, pp 37–45

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant and Soil 159:89–102

    CAS  Google Scholar 

  • Mathur N, Vyas A (1995) Influence of VA mycorrhizae on net photosynthesis and transpiration of Ziziphus mauritiana. J Plant Physiol 147:328–330

    CAS  Google Scholar 

  • Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751

    Article  Google Scholar 

  • Paradi I, Bratek Z, Lang F (2003) Influence of arbuscular mycorrhiza and phosphorus supply on polyamine content, growth and photosynthesis of Plantago lanceolata. Biol Plantarum 46:563–569

    Article  CAS  Google Scholar 

  • Peskan-Berghöfer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V, Kost G, Varma A, Oelmüller R (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 122:465–477

    Article  CAS  Google Scholar 

  • Pham GH, Kumari R, Singh A, Malla R, Prasad R, Sachdev M, Kaldorf M, Buscot F, Oelmüller R, Hampp R, Saxena AK, Rexer KH, Kost G, Varma A (2004) Axenic Culture of Symbiotic Fungus Piriformospora indica. In: Varma A, Abbot L, Werner D, Hampp R (eds) Plant Surface Microbiology. Springer-Verlag Berlin, Heidelberg, pp 593–612

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transact Brit Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcón-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  PubMed  CAS  Google Scholar 

  • Rai M, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128

    Article  Google Scholar 

  • Reinhardt D (2007) Programming good relations—development of the arbuscular mycorrhizal symbiosis. Curr Op Plant Biol 10:98–105

    Article  Google Scholar 

  • Schäfer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, Scholz U, Pons-Kühnemann J, Sonnewald S, Sonnewald U, Kogel KH (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59:461–474

    Article  PubMed  CAS  Google Scholar 

  • Selosse MA, Le Tacon F (1998) The land flora—a phototroph-fungus partnership. Trends Ecol Evol 13:15–20

    Article  Google Scholar 

  • Serfling A, Wirsel SGR, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathol 97:523–531

    Article  CAS  Google Scholar 

  • Shahollari B, Varma A, Oelmüller R (2005) Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 162:945–958

    Article  PubMed  CAS  Google Scholar 

  • Sirrenberg A, Goebel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussner I, Pawlowski K (2007) Piriformospora indica affects plant growth by auxin production. Physiol Plant 131:581–589

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221

    Google Scholar 

  • Varma A, Verma S, Sudah SN, Franken P (1999) Piriformospora indica, a cultivable plant growth-promoting root endophyte. Appl & Environ Microbiol 65:2741–2744

    CAS  Google Scholar 

  • Verma S, Varma A, Rexer K-H, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P (1998) Piriformospora indica, gen. nov. sp. nov., a new root-colonizing fungus. Mycologia 90:896–903

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    Article  PubMed  CAS  Google Scholar 

  • Waller F, Mukherjee K, Deshmukh SD, Achatz B, Sharma M, Schäfer P, Kogel KH (2008) Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. J Plant Physiol 165:60–70

    Article  PubMed  CAS  Google Scholar 

  • Weiss M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108:1003–1010

    Article  PubMed  Google Scholar 

  • Wright DP, Scholes JD, Read DJ (1998) Effects of VA mycorrhizal colonisation on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ 21:209–216

    Article  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Biedenkopf and C. Neumann for excellent technical assistance, S. Deshmukh, M. Sharma and H. Baltruschat for providing unpublished HvPht1;8 expression results and two anonymous reviewers for helpful comments. We are grateful for support with photosynthesis measurements by H.-W. Koyro and for support by M. Kolmer at the experimental station Rauischholzhausen. DA was supported by the German Academic Exchange Service (DAAD). This work was supported by Deutsche Forschungsgemeinschaft (DFG) grant FOR666 to KHK and FW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Waller.

Additional information

Responsible Editor: Jesus Mercado-Blanco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achatz, B., von Rüden, S., Andrade, D. et al. Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant Soil 333, 59–70 (2010). https://doi.org/10.1007/s11104-010-0319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0319-0

Keywords

Navigation