Skip to main content

Advertisement

Log in

Influence of grazing on hydraulic and mechanical properties of semiarid steppe soils under different vegetation type in Inner Mongolia, China

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Over the last few decades, due to increase in grazing intensity, animal trampling has led to soil structure deterioration in Inner Mongolia, China. We investigated two different steppe ecosystems: Leymus chinensis (LCh, characterized by relatively higher precipitation) and Stipa grandis (SG) and two grazing intensities: ungrazed since 1979 (UG79) and grazed (continuously grazed, CG, at the Stipa grandis site and winter grazed, WG, at Leymus chinensis). Soil mechanical and hydraulic properties of semiarid steppe soils from each site and treatment were determined for soil aggregates and disturbed and bulk soil samples from different depths (4–8, 18–22, 30–34 and 56–60 cm for disturbed and bulk samples and 0–15 cm for the aggregates). Grazing causes a significant increase in tensile strength of aggregates and in the precompression stress of the bulk soil as well as a decrease in air and saturated hydraulic conductivity, irrespective of the vegetation type. Furthermore, exclusion from grazing led to more pronounced recovery of soil strength and pore continuity and hydraulic conductivity at the LCh site but it also depended on the moisture conditions of the sites. Under wetter conditions as well as after repeated freezing and thawing the soil strength declined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abid M, Lal R (2009) Tillage and drainage impact on soil quality: II. Tensile strength of aggregates, moisture retention and water infiltration. Soil Tillage Res 103:364–372

    Article  Google Scholar 

  • Ashman MR, Hallett PD, Brookes PC, Allen J (2009) Evaluating soil stabilisation by biological processes using step-wise aggregate fractionation. Soil Tillage Res 102:209–215

    Article  Google Scholar 

  • Bachmann J, Woche SK, Goebel M-O (2003) Extended methodology for determining wetting properties of porous media. Water Resour Res 39:1353

    Article  Google Scholar 

  • Bai Y, Han X, Wu J, Chen Z, Li L (2004) Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431:181–184

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Canqui H, Lal R, Owens LB, Post WM, Izaurralde RC (2005) Mechanical properties and organic carbon of soil aggregates in the Northern Appalachians. Soil Sci Soc Am J 69:1472–1481

    Article  CAS  Google Scholar 

  • Broersma K, Krzic M, Newman R, Bomke A (2000) Effects of grazing on soil compaction and water infiltration in forest plantations in the Interior of British Columbia. In: Hollstedt C, Sutherland K, Innes T (eds) Proceedings, From science to management and back: a science forum for the southern interior ecosystems of British Columbia. Southern Interior Forest Extension and Research Partnership, Kamloops, pp 89–92

    Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Bryant R, Doerr SH, Hunt G, Conan S (2007) Effects of compaction on soil surface water repellency. Soil Use Manage 23:238–244

    Article  Google Scholar 

  • Bullinger-Weber G, Le Bayon R-C, Guenat C, Gobat J-M (2007) Influence of some physicochemical and biological parameters on soil structure formation in alluvial soils. Eur J Soil Biol 43:57–70

    Article  CAS  Google Scholar 

  • Casagrande A (1936) The determination of preconsolidation load and its practical significance. Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering, Cambridge 3:60–64

    Google Scholar 

  • Cetin H (2004) Soil-particle and pore orientations during consolidation of cohesive soils. Eng Geol 73:1–11

    Article  Google Scholar 

  • Chen SP, Bai YF, Lin GH, Liang Y, Han XG (2005) Effects of grazing on photosynthetic characteristics of major steppe species in the Xilin River Basin, Inner Mongolia, China. Photosynthetica 43:559–565

    Article  Google Scholar 

  • Czurda KA, Hohmann M (1997) Freezing effect on shear strength of clayey soils. Appl Clay Sci 12:165–187

    Article  CAS  Google Scholar 

  • Dan S, Mengli Z, Bing H, Guodong H (2006) Examining the genetic diversity of Stipa grandis under various grazing pressures. Acta Ecologica Sinica 26:3175–3183

    Article  Google Scholar 

  • Dekker LW, Ritsema CJ (1996) Variation in water content and wetting patterns in Dutch water repellent peaty clay and clayey peat soils. Catena 28:89–105

    Article  CAS  Google Scholar 

  • Dexter AR, Watts CW (2000) Tensile strength and friability. In: Smith KA, Mullins CE (eds) Soil environmental analysis. Physical methods. Dekker, New York, pp 401–430

    Google Scholar 

  • Dörner J, Horn R (2009) Direction-dependent behavior of hydraulic and mechanical properties in structured soils under conventional and conservational tillage. Soil Tillage Res 102:225–232

    Article  Google Scholar 

  • Drewry JJ (2006) Natural recovery of soil physical properties from treading damage of pastoral soils in New Zealand and Australia: a review. Agric Ecosyst Environ 114:159–169

    Article  Google Scholar 

  • DVWK (1995) Gefügestabilität ackerbaulich genutzter Mineralböden; Teil I: Mechanische Belastbarkeit. Merkblätter zur Wasserwirtschaft Heft 234

  • Feng X, Nielsen LL, Simpson MJ (2007) Responses of soil organic matter and microorganisms to freeze-thaw cycles. Soil Biol Biochem 39:2027–2037

    Article  CAS  Google Scholar 

  • Görres JH, Savin MC, Amador JA (2001) Soil micropore structure and carbon mineralization in burrows and casts of an anecic earthworm (Lumbricus terrestris). Soil Biol Biochem 33:1881–1887

    Article  Google Scholar 

  • Greenwood KL, McKenzie BM (2001) Grazing effects on soil physical properties and the consequences for pastures: a review. Aust J Exp Agric 41:1231–1250

    Article  Google Scholar 

  • Greenwood KL, MacLeod DA, Scott JM, Hutchinson KJ (1998) Changes to soil physical properties after grazing exclusion. Soil Use Manage 14:19–24

    Article  Google Scholar 

  • Hallaire V, Curmi P, Duboisset A, Lavelle P, Pashanasi B (2000) Soil structure changes induced by the tropical earthworm Pontoscolex corethrurus and organic inputs in a Peruvian ultisol. Eur J Soil Biol 36:35–44

    Article  Google Scholar 

  • Hallett PD, Young IM (1999) Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. Eur J Soil Sci 50:35–40

    Article  Google Scholar 

  • Hallett PD, Baumgartl T, Young IM (2001) Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci Soc Am J 65:184–190

    Article  CAS  Google Scholar 

  • Hallett PD, Nunan N, Douglas JT, Young IM (2004) Millimeter-scale spatial variability in soil water sorptivity: scale, surface elevation and subcritical repellency effects. Soil Sci Soc Am J 68:352–358

    CAS  Google Scholar 

  • Hartge KH, Horn R (2009) Die physikalische Untersuchung von Böden. E. Schweizerbart’Sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Horn R (1986) The influence of animal treading on soil physical properties of mountainous soils. Mitt Dtsch Bodenkundl Gesellsch 46:64–69

    Google Scholar 

  • Horn R, Smucker A (2005) Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil Tillage Res 82:5–14

    Article  Google Scholar 

  • Horn R, Taubner H, Wuttke M, Baumgartl T (1994) Soil physical properties related to soil structure. Soil Tillage Res 30:187–216

    Article  Google Scholar 

  • Horn R, Domżał H, Słowińska-Jurkiewicz A, van Ouwerkerk C (1995) Soil compaction processes and their effects on the structure of arable soils and the environment. Soil Tillage Res 35:23–36

    Article  Google Scholar 

  • Jastrow JD (1996) Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol Biochem 28:665–676

    Article  CAS  Google Scholar 

  • Jongmans AG, Pulleman MM, Balabane M, van Oort F, Marinissen JCY (2003) Soil structure and characteristics of organic matter in two orchards differing in earthworm activity. Appl Soil Ecol 24:219–232

    Article  Google Scholar 

  • Krümmelbein J, Wang Z, Zhao Y, Peth S, Horn R (2006) Influence of various grazing intensities on soil stability, soil structure and water balance of grassland soils in Inner Mongolia, P.R. China. In: Horn R, Fleige H, Peth S, Peng X (eds) Soil management for sustainability. Advances in GeoEcology. Vol. 38. Catena Verlag, Reiskirchen, pp 93–101

    Google Scholar 

  • Krümmelbein J, Peth S, Horn R (2008) Determination of pre-compression stress of a variously grazed steppe soil under static and cyclic loading. Soil Tillage Res 99:139–148

    Article  Google Scholar 

  • Kværnø SH, Øygarden L (2006) The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena 67:175–182

    Article  Google Scholar 

  • Lesschen JP, Cammeraat LH, Kooijman AM, van Wesemael B (2008) Development of spatial heterogeneity in vegetation and soil properties after land abandonment in a semi-arid ecosystem. J Arid Environ 72:2082–2092

    Article  Google Scholar 

  • Martinez LJ, Zinck JA (2004) Temporal variation of soil compaction and deterioration of soil quality in pasture areas of Colombian Amazonia. Soil Tillage Res 75:3–17

    Article  Google Scholar 

  • Mbagwu JSC, Bazzoffi P (1989) Effect of freezing and thawing on the stability of soil aggregates treated with organic wastes. Cold Reg Sci Technol 16:191–199

    Article  Google Scholar 

  • McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. Am Stat 32:12–16

    Article  Google Scholar 

  • Mosaddeghi MR, Hajabbasi MA, Khademi H (2006) Tensile strength of sand, palygorskite and calcium carbonate mixtures and the interpretation with the effective stress theory. Geoderma 134:160–170

    Article  CAS  Google Scholar 

  • Mosaddeghi MR, Koolen AJ, Hajabbasi MA, Hemmat A, Keller T (2007) Suitability of pre-compression stress as the real critical stress of unsaturated agricultural soils. Biosystems Eng 98:90–101

    Article  Google Scholar 

  • Munkholm LJ, Schjønning P, Kay BD (2002) Tensile strength of soil cores in relation to aggregate strength, soil fragmentation and pore characteristics. Soil Tillage Res 64:125–135

    Article  Google Scholar 

  • Oades JM (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:377–400

    Article  Google Scholar 

  • Oztas T, Fayetorbay F (2003) Effect of freezing and thawing processes on soil aggregate stability. Catena 52:1–8

    Article  CAS  Google Scholar 

  • Peth S (2004) Bodenphysikalische Untersuchungen zur Trittbelastung von Böden bei der Rentierweidewirtschaft an borealen Wald- und subarktisch-alpinen Tundrenstandorten—Auswirkungen auf thermische, hydraulische und mechanische Bodeneigenschaften. Schriftenreihe des Institut für Pflanzenernährung und Bodenkunde (Christian-Albrechts-Universität Kiel) 64

  • Peth S, Horn R (2006) Consequences of grazing on soil physical and mechanical properties in forest and tundra environments. In: Forbes BC, Bölter M, Müller-Wille L, Hukkinen J, Müller F, Gunslay N, Konstatinov Y (eds) Ecological studies. Reindeer management in Northernmost Europe. Springer, Berlin, pp 217–243

    Chapter  Google Scholar 

  • Peth S, Rostek J, Zink A, Mordhorst A, Horn R (2010) Soil testing of dynamic deformation processes of arable soils. Soil Tillage Res. In press

  • Pires LF, Cooper M, Cássaro FAM, Reichardt K, Bacchi OOS, Dias NMP (2008) Micromorphological analysis to characterize structure modifications of soil samples submitted to wetting and drying cycles. Catena 72:297–304

    Article  Google Scholar 

  • Proffitt APB, Bendotti S, McGarry D (1995) A comparison between continuous and controlled grazing on a red duplex soil. I. Effects on soil physical characteristics. Soil Tillage Res 35:199–210

    Article  Google Scholar 

  • Sander T, Gerke HH, Rogasik H (2008) Assessment of Chinese paddy-soil structure using X-ray computed tomography. Geoderma 145:303–314

    Article  Google Scholar 

  • Schlichting E, Blume HP, Stahr K (1995) Bodenkundliches Praktikum. Blackwell Wissenschafts-Verlag, Berlin

    Google Scholar 

  • Semmel H, Horn R, Hell U, Dexter AR, Schulze ED (1990) The dynamics of soil aggregate formation and the effect on soil physical properties. Soil Technol 3:113–129

    Article  Google Scholar 

  • Shoop S, Affleck R, Haehnel R, Janoo V (2008) Mechanical behavior modeling of thaw-weakened soil. Cold Reg Sci Technol 52:191–206

    Article  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Article  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Tobias S, Tietje O (2007) Modelling experts’ judgements on soil compaction to derive decision rules for soil protection-A case study from Switzerland. Soil Tillage Res 92:129–143

    Article  Google Scholar 

  • Tollner EW, Calvert GV, Langdale G (1990) Animal trampling effects on soil physical properties of two Southeastern U.S. ultisols. Agric Ecosyst Environ 33:75–87

    Article  Google Scholar 

  • Urbanek E, Hallett P, Feeney D, Horn R (2007) Water repellency and distribution of hydrophilic and hydrophobic compounds in soil aggregates from different tillage systems. Geoderma 140:147–155

    Article  CAS  Google Scholar 

  • Venables WN, Smith DM, the R Development Core Team (2009) An introduction to R. Notes on R: a programming environment for data analysis and graphics. Version 2.10.1 (2009-12-14). Available at http://www.r-project.org. Accessed 16 April 2010

  • Wiesmeier M, Steffens M, Kölbl A, Kögel-Knabner I (2009) Degradation and small-scale spatial homogenization of topsoils in intensively-grazed steppes of Northern China. Soil Tillage Res 104:299–310

    Article  Google Scholar 

  • Yong-Zhong S, Yu-Lin L, Jian-Yuan C, Wen-Zhi Z (2005) Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China. Catena 59:267–278

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly indebted to the German Research Foundation (DFG) for the financial support of this research group MAGIM (Forschergruppe 536 MAGIM—Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate) as well as they would like to thank Xingguo Han, Yongfei Bai and the Institute of Botany (Chinese Academy of Sciences) for the opportunity to work at IMGERS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Reszkowska.

Additional information

Responsible Editor: Ingrid Koegel-Knabner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reszkowska, A., Krümmelbein, J., Peth, S. et al. Influence of grazing on hydraulic and mechanical properties of semiarid steppe soils under different vegetation type in Inner Mongolia, China. Plant Soil 340, 59–72 (2011). https://doi.org/10.1007/s11104-010-0405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0405-3

Keywords

Navigation