Skip to main content

Advertisement

Log in

Quality and decomposition in soil of rhizome, root and senescent leaf from Miscanthus x giganteus, as affected by harvest date and N fertilization

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

To predict the environmental benefits of energy crop production and use, the nature and fate of biomass residues in the soil need to be quantified. Our objective was to quantify Miscanthus x giganteus biomass recycling to soil and to assess how harvesting time and N fertilization affect their characteristics and subsequent biodegradability. The quantification of aerial and belowground biomass and their sampling were performed on 2- and 3-year-old Miscanthus stands, either fertilized with 120 kg N ha−1 year−1 or not fertilized, in autumn (maximal biomass production) and winter (maturity). Plant biomass was chemically characterized (total sugars, Klason lignin, C/N) and incubated in optimum decomposition conditions (15°C, −80 kPa) for 263 days, for C and N mineralization. Accumulation of carbon in rhizomes and roots was 7.5 to 10 t C ha−1 and represented about 50% of total plant biomass C. Senescent leaves represented about 1.5 t C ha−1 year−1. All residues, especially the roots, had high lignin contents, while the rhizomes also had a high soluble content due to their nutrient storage function. The C mineralization rates were closely related to the chemical characteristics of the residue, higher sugar and lower lignin contents leading to faster decomposition, as observed for rhizomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abiven S, Recous S, Oliver R (2005) Mineralization of C and N from root, stem and leaf-residues in soil and role of their biochemical quality. Biol Fertil Soils 45:119–128

    Article  Google Scholar 

  • Ágoston-Szabó E, Dinka M, Némedi L, Horváth G (2004) Decomposition of Phragmites australis rhizome in a shallow lake. Aquat Bot 85:309–316

    Article  Google Scholar 

  • Asaeda T, Nam LH (2002) Effects of rhizome age on the decomposition rate of Phragmites australis rhizomes. Hydrobiologia 485:205–208

    Article  CAS  Google Scholar 

  • Balesdent J, Balabane M (1996) Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol Biochem 28:1261–1263

    Article  CAS  Google Scholar 

  • Beale CV, Long SP (1997) Seasonal dynamics of nutrient accumulation and partitioning in the perennial C-4-grasses Miscanthus x giganteus and Spartina cynosuroides. Biomass Bioenergy 12:419–428

    Article  Google Scholar 

  • Bertrand I, Chabbert B, Kurek B, Recous S (2006) Can the biochemical features and histology of wheat residues explain their decomposition in soil? Plant Soil 281:291–307

    Article  CAS  Google Scholar 

  • Bertrand I, Prevot M, Chabbert B (2009) Soil decomposition of wheat internodes of different maturity stages: relative impact of the soluble and structural fractions. Bioresour Technol 100:155–163

    Article  CAS  PubMed  Google Scholar 

  • Beuch S, Boelcke B, Belau L (2000) Effect of the organic residues of Miscanthus x giganteus on the soil organic matter level of arable soils. Eur J Agron 184:111–119

    CAS  Google Scholar 

  • Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113:291–299

    Article  CAS  Google Scholar 

  • Bullard MJ, Nixon PMI, Cheath M (1997) Quantifying the yield of Miscanthus x giganteus in the UK. Aspects Appl Biol 49:199–206

    Google Scholar 

  • Burner DM, Tew TL, Harvey JJ, Belesky DP (2009) Dry matter partitioning and quality of Miscanthus, Panicum, and Saccharum genotypes in Arkansas, USA. Biomass Bioenergy 33:610–619

    Article  Google Scholar 

  • Chaussod R, Nicolardot B, Catroux G (1986) Mesure en routine de la biomasse microbienne des sols par la méthode de fumigation au chloroforme. Sci Sol 2:201–211

    Google Scholar 

  • Christian DG, Poulton PR, Riche AB, Yates NE (1997) The recovery of 15N-labelled fertilizer applied to Miscanthus x giganteus. Biomass Bioenergy 12:21–24

    Article  CAS  Google Scholar 

  • Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus giganteus grown as a biofuel for 14 successive harvests. Ind Crops Prod 28:320–327

    Article  Google Scholar 

  • Christian DG, Riche AB, Yates NE (2009) Estimation of ramet production from Miscanthus giganteus rhizome of different ages. Ind Crops Prod 30:176–178

    Article  CAS  Google Scholar 

  • Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jørgensen U, Mortensen JV, Riche AB, Schwarz KU, Tayebi K, Teixera F (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019

    Article  Google Scholar 

  • Danalatos NG, Archontoulis SV, Mitsios I (2007) Potential growth and biomass productivity of Miscanthus x giganteus as affected by plant density and N-fertilization in central Greece. Biomass Bioenergy 31:145–152

    Article  Google Scholar 

  • Dhugga KS (2007) Maize biomass yield and composition for biofuels. Crop Sci 47:2211–2227

    Article  CAS  Google Scholar 

  • Dinka M, Ágoston-Szabó E, Tóth I (2004) Changes in nutrients content of decomposing Phragmites australis litter. Int Rev Hydrobiol 89:519–535

    Article  CAS  Google Scholar 

  • Ernst G, Henseler I, Felten D, Emmerling C (2009) Decomposition of energy crop residues governed by earthworms. Soil Biol Biochem 41:1548–1554

    Article  CAS  Google Scholar 

  • Foereid B, Neergaard A, Hogh-Jensen H (2004) Turnover of organic matter in a Miscanthus field: effect of time in Miscanthus cultivation and inorganic nitrogen supply. Soil Biol Biochem 36:1075–1085

    Article  CAS  Google Scholar 

  • Goering HK, Van Soest PJ (1970) Forage fibre analyses. US Government Printing Office, Washington DC, Agric Handb No. 379, USDA-ARS

    Google Scholar 

  • Hansen EM, Christensen BT, Jensen LS, Kristensen K (2004) Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by 13C abundance. Biomass Bioenergy 26:97–105

    Article  CAS  Google Scholar 

  • Heaton E, Voigt T, Long SP (2004) A quantitative review comparing the yields of two candidate C-4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy 27:21–30

    Article  Google Scholar 

  • Heaton E, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14:2000–2014

    Article  Google Scholar 

  • Henriksen TM, Breland TA (1999) Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biol Biochem 31:1121–1134

    Article  CAS  Google Scholar 

  • Himken M, Lammel J, Neukirchen D, Czypionka-Krauze U, Olfs HW (1997) Cultivation of Miscanthus under West European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189:117–126

    Article  CAS  Google Scholar 

  • Jensen LS, Salo T, Palmason F, Breland TA, Henriksen TM, Stenberg B, Pedersen A, Lundström C, Esala M (2005) Influence of biochemical quality on C and N mineralization from a broad variety of plant materials in soil. Plant Soil 273:307–326

    Article  CAS  Google Scholar 

  • Johnson JMF, Barbour NW, Weyers SL (2007) Chemical composition of crop biomass impacts its decomposition. Soil Sci Soc Am J 71:155–162

    Article  CAS  Google Scholar 

  • Kahle P, Beuch S, Boelcke B, Leinweber P, Schulten HR (2001) Cropping of Miscanthus in Central Europe: biomass production and influence on nutrients and soil organic matter. Eur J Agron 15:171–184

    Article  CAS  Google Scholar 

  • Kamphake LJ, Hannah SA, Cohen JM (1967) Automated analysis for nitrate by hydrazine reduction. Water Res 1:205–216

    Article  CAS  Google Scholar 

  • Kato Y, Nevis DJ (1985) Isolation and identification of O-(5-O-feruloyl-α-L-arabinosyl) – (1→4)-D-xylopyranose as a component of Zea shoot cell-walls. Carbohydr Res 137:139–150

    Article  CAS  Google Scholar 

  • Krom MD (1980) Spectrophotometric determination of ammonia: a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Anal 105:305–316

    Article  CAS  Google Scholar 

  • Lal R (2004) Agricultural activities and the global carbon cycle. Nutr Cycl Agroecosys 70:103–116

    Article  CAS  Google Scholar 

  • Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31:575–584

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2009) Soil quality impacts of residue removal for bioethanol production. Soil Tillage Res 102:233–241

    Article  Google Scholar 

  • Lewandowski I, Heinz A (2003) Delayed harvest of miscanthus—influences on biomass quantity and quality and environmental impacts of energy production. Eur J Agron 19:45–63

    Article  Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    Article  CAS  Google Scholar 

  • Liebig MA, Schmer MR, Vogel KP, Mitchell RB (2008) Soil carbon storage by switchgrass grown for bioenergy. Bioenergy Res 1:215–222

    Article  Google Scholar 

  • Machinet GE, Bertrand I, Chabbert B, Recous S (2009) Decomposition in soil and chemical changes of maize roots with genetic variations affecting cell wall quality. Eur J Soil Sci 60:176–185

    Article  CAS  Google Scholar 

  • Magid J, Luxhøi J, Lyshede OB (2004) Decomposition of plant residues at low temperatures separates turnover of nitrogen and energy rich tissue components in time. Plant Soil 258:351–365

    Article  CAS  Google Scholar 

  • Mary B, Beaudoin N, Justes E, Machet JM (1999) Calculation of nitrogen mineralization and leaching in fallow soil using a simple dynamic model. Eur J Soil Sci 50:549–566

    Article  Google Scholar 

  • Miguez FE, Villamil MB, Long SP, Bollero GA (2008) Meta-analysis of the effects of management factors on Miscanthus x giganteus growth and biomass production. Agric For Meteorol 148:1280–1292

    Article  Google Scholar 

  • Monti A, Zatta A (2009) Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agric Ecosyst Environ 132:252–259

    Article  Google Scholar 

  • Monties B (1984) Dosage de la lignine insoluble en milieu acide: Influence du prétraitement par hydrolyse acide sur la lignine Klason de bois et de paille. Agronomie 4:387–392

    Article  Google Scholar 

  • Neukirchen D, Himken M, Lammel J, Czyionka-Krause U, Olfs HW (1999) Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur J Agron 11:301–309

    Article  Google Scholar 

  • Puget P, Drinkwater LE (2001) Short-term dynamics of root- and shoot-derived carbon from a leguminous manure. Soil Sci Soc Am J 65:771–779

    Article  CAS  Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Soil Biol Biochem 269:341–356

    CAS  Google Scholar 

  • Recous S, Robin D, Darwis S, Mary B (1995) Soil inorganic N availability: effect on maize decomposition. Soil Biol Biochem 27:1529–1538

    Article  CAS  Google Scholar 

  • Saffih-Hdadi K, Mary B (2008) Modeling consequences of straw residues export on soil organic carbon. Soil Biol Biochem 40:594–607

    Article  CAS  Google Scholar 

  • Schwarz KU, Murphy DPL, Schnug E (1994) Studies of the growth and yield of Miscanthus x giganteus in Germany. Aspects Appl Biol 40:533–540

    Google Scholar 

  • Trinsoutrot I, Recous S, Bentz B, Linères M, Chèneby D, Nicolardot B (2000) Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under nonlimiting nitrogen conditions. Soil Sci Soc Am J 64:918–926

    Article  CAS  Google Scholar 

  • Tuck G, Glendining MJ, Smith P, House JI, Wattenbach M (2006) The potential distribution of bioenergy in Europe under present and future climate. Biomass Bioenergy 30:183–197

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by INRA and the Region Champagne Ardenne who provided the doctoral grant to N. Amougou, and the Region Picardie (MISQUAL project AAP07-52). The authors thank S. Cadoux and M. Preudhomme (INRA Agro-Impact) for field experiment management and for providing the plant material and F. Millon, S. Millon and G. Alavoine for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Recous.

Additional information

Responsible Editor: M. Francesca Cotrufo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amougou, N., Bertrand, I., Machet, JM. et al. Quality and decomposition in soil of rhizome, root and senescent leaf from Miscanthus x giganteus, as affected by harvest date and N fertilization. Plant Soil 338, 83–97 (2011). https://doi.org/10.1007/s11104-010-0443-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0443-x

Keywords

Navigation