Skip to main content
Log in

Traits related to differences in function among three arbuscular mycorrhizal fungi

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Diversity in phosphorus (P) acquisition strategies was assessed among three species of arbuscular mycorrhizal fungi (AMF) isolated from a single field in Switzerland. Medicago truncatula was used as a test plant. It was grown in a compartmented system with root and root-free zones separated by a fine mesh. Dual radioisotope labeling (32P and 33P) was employed in the root-free zone as follows: 33P labeling determined hyphal P uptake from different distances from roots over the entire growth period, whereas 32P labeling investigated hyphal P uptake close to the roots over the 48 hours immediately prior to harvest. Glomus intraradices, Glomus claroideum and Gigaspora margarita were able to take up and deliver P to the plants from maximal distances of 10, 6 and 1 cm from the roots, respectively. Glomus intraradices most rapidly colonized the available substrate and transported significant amounts of P towards the roots, but provided the same growth benefit as compared to Glomus claroideum, whose mycelium was less efficient in soil exploration and in P uptake and delivery to the roots. These differences are probably related to different carbon requirements by these different Glomus species. Gigaspora margarita provided low P benefits to the plants and formed dense mycelium networks close to the roots where P was probably transiently immobilized. Numerical modeling identified possible mechanisms underlying the observed differences in patterns of mycelium growth. High external hyphal production at the root-fungus interface together with rapid hyphal turnover were pointed out as important factors governing hyphal network development by Gigaspora, whereas nonlinearity in apical branching and hyphal anastomoses were key features for G. intraradices and G. claroideum, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMF:

Arbuscular mycorrhizal fungi

ANOVA:

Analysis of variance

DW:

Dry weight

ERM:

Extraradical mycelium

HLD:

Hyphal length density

NM:

Non-mycorrhizal

P:

Phosphorus

p :

Probability level

PUE:

Phosphorus Use Efficiency

RMSE:

Root mean squared error

References

  • Abbott LK, Robson AD (1985) Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol 99(2):245–255

    Article  Google Scholar 

  • Abbott LK, Robson AD, Gazey C (1992) Selection of inoculant vesicular-arbuscular mycorrhizal fungi. Methods Microbiol 24:1–21

    Article  Google Scholar 

  • Avio L, Pellegrino E, Bonari E, Giovannetti M (2006) Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol 172(2):347–357

    Article  PubMed  Google Scholar 

  • Bago B, Azcon-Aguilar C, Goulet A, Piche Y (1998) Branched absorbing structures (bas): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol 139(2):375–388

    Article  Google Scholar 

  • Baon JB, Smith SE, Alston AM (1993) Mycorrhizal responses of barley cultivars differing in P-efficiency. Plant Soil 157(1):97–105

    Google Scholar 

  • Boddington CL, Dodd JC (1998) A comparison of the development and metabolic activity of mycorrhizas formed by arbuscular mycorrhizal fungi from different genera on two tropical forage legumes. Mycorrhiza 8(3):149–157

    Article  CAS  Google Scholar 

  • Boddington CL, Dodd JC (1999) Evidence that differences in phosphate metabolism in mycorrhizas formed by species of Glomus and Gigaspora might be related to their life-cycle strategies. New Phytol 142(3):531–538

    Article  Google Scholar 

  • Brundrett MC, Piche Y, Peterson RL (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can J Bot 62(10):2128–2134

    Article  Google Scholar 

  • Burleigh SH, Cavagnaro T, Jakobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53(374):1593–1601

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro TR, Smith FA, Ayling SM, Smith SE (2003) Growth and phosphorus nutrition of a Paris-type arbuscular mycorrhizal symbiosis. New Phytol 157(1):127–134

    Article  Google Scholar 

  • Frossard E, Sinaj S (1997) The isotope exchange kinetic technique: a method to describe the availability of inorganic nutrients. Applications to K, P, S and Zn. Isot Environ Health Stud 33(1–2):61–77

    CAS  Google Scholar 

  • Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389

    Article  CAS  PubMed  Google Scholar 

  • Hart MM, Reader RJ (2002a) Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biol Fertil Soils 36(5):357–366

    Article  Google Scholar 

  • Hart MM, Reader RJ (2002b) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153(2):335–344

    Article  Google Scholar 

  • Hoagland D, Arnon D (1950) The water-culture method for growing plants without soil. Circular 347. California Agricultural Experimental Station, Berkeley, p 32

    Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115(1):77–83

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992a) External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trifolium subterraneum l.2. Hyphal transport of 32P over defined distances. New Phytol 120(4):509–516

    Article  CAS  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992b) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum l.1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120(3):371–380

    Article  CAS  Google Scholar 

  • Jakobsen I, Smith SE, Smith FA (2002) Function and diversity of arbuscular mycorrhizae in carbon and mineral nutrition. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer Ecological Studies, Heidelberg, pp 75–92

    Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12(5):225–234

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2003) Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23(5–6):481–488

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2005) Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276(1–2):163–176

    Article  CAS  Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177(3):779–789

    Article  CAS  PubMed  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: Transport properties and regulatory roles. Plant Cell Environ 30(3):310–322

    Article  CAS  PubMed  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10(1):22–29

    Article  CAS  PubMed  Google Scholar 

  • Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J Optim 9(1):112–147

    Article  Google Scholar 

  • Lerat S, Lapointe L, Gutjahr S, Piche Y, Vierheilig H (2003) Carbon partitioning in a split-root system of arbuscular mycorrhizal plants is fungal and plant species dependent. New Phytol 157(3):589–595

    Article  Google Scholar 

  • Li HY, Smith FA, Dickson S, Holloway RE, Smith SE (2008) Plant growth depressions in arbuscular mycorrhizal symbioses: Not just caused by carbon drain? New Phytol 178(4):852–862

    Article  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316(5832):1746–1748

    Article  CAS  PubMed  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115(3):495–501

    Article  Google Scholar 

  • Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164(2):357–364

    Article  Google Scholar 

  • Ohno T, Zibilske LM (1991) Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci Soc Am J 55(3):892–895

    Article  CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Schnepf A, Roose T (2006) Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake. New Phytol 171(3):669–682

    CAS  PubMed  Google Scholar 

  • Schnepf A, Roose T, Schweiger P (2008a) Growth model for arbuscular mycorrhizal fungi. J R Soc Interface 5(24):773–784

    Article  CAS  PubMed  Google Scholar 

  • Schnepf A, Roose T, Schweiger P (2008b) Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake—a modelling study. Plant Soil 312(1–2):85–99

    Article  CAS  Google Scholar 

  • Schweiger PF, Thingstrup I, Jakobsen I (1999) Comparison of two test systems for measuring plant phosphorus uptake via arbuscular mycorrhizal fungi. Mycorrhiza 8(4):207–213

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, Cambridge

    Google Scholar 

  • Smith P, Smith JU, Powlson DS, McGill WB, Arah JRM, Chertov OG, Coleman K, Franko U, Frolking S, Jenkinson DS, Jensen LS, Kelly RH, Klein-Gunnewiek H, Komarov AS, Li C, Molina JAE, Mueller T, Parton WJ, Thornley JHM, Whitmore AP (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81(1–2):153–225

    Article  Google Scholar 

  • Smith FA, Jakobsen I, Smith SE (2000) Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147(2):357–366

    Article  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133(1):16–20

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total p uptake. New Phytol 162(2):511–524

    Article  Google Scholar 

  • Solaiman MZ, Saito A (2001) Phosphate efflux from intraradical hyphae of Gigaspora margarita in vitro and its implication for phosphorus translocation. New Phytol 151(2):525–533

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Scheublin TR (2007) Functional traits in mycorrhizal ecology: Their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning. New Phytol 174(2):244–250

    Article  PubMed  Google Scholar 

  • Walpole R, Myers R, Myers S, Ye K (2007) Probability & statistics for engineers & scientists. Prentice Hall International, New Jersey

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to a number of colleagues, who helped with establishment, maintenance and harvest of the cuvette experiment as well as with data acquisition. Namely, our thanks go to: Dr Irena Jansová, Theres Rösch, Cornelia Bühlmann, Thomas Flura, Ariane Keller and Patrick Flütsch. Two anonymous reviewers are thanked to for their valuable comments. Financial support of ETH Zurich (project no.10 TH 14/05-3) and the Austrian Science Fund (FWF, project no T341-N13) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Thonar.

Additional information

Responsible Editor: Angela Hodge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

(PDF 253 kb)

Online resource 2

(PDF 318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thonar, C., Schnepf, A., Frossard, E. et al. Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339, 231–245 (2011). https://doi.org/10.1007/s11104-010-0571-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0571-3

Keywords

Navigation