Skip to main content

Advertisement

Log in

Phytotoxicity of glyphosate soil residues re-mobilised by phosphate fertilisation

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

It has been repeatedly demonstrated that phosphate (P) and the herbicide glyphosate compete for adsorption sites in soils. Surprisingly, the potential consequences of these interactions for plants e.g. re-solubilisation of phytotoxic glyphosate residues in soils by application of P fertilisers or by root-induced mechanisms for P mobilization have not been investigated so far. In model experiments under greenhouse conditions, the potential for glyphosate re-mobilisation by P-fertiliser application was evaluated by bio-indication with soybean (Glycine max L.) cultivated on five contrasting soils with or without glyphosate application at 10–35 days before sowing. Different levels of P-fertilisation (0, 20, 40, 80, 240 mg P kg−1 soil) were supplied at the date of sowing. Visual symptoms of glyphosate toxicity, plant biomass, intracellular shikimate accumulation as physiological indicator for glyphosate toxicity and the plant nutritional status were determined. On glyphosate-treated soils, P application induced significant plant damage. Expression of damage symptoms declined in the order Arenosol > Acrisol ≈ Ferralsol > Luvisol subsoil > Regosol. On the Arenosol, Ferralsol and Luvisol subsoil plant damage was associated with increased shikimate accumulation in the root tissue. On the Acrisol decline of germination and plant damage in absence of shikimate accumulation indicate toxicity of AMPA (aminomethylphosphonic acid) as the main metabolite of glyphosate in soils. On the Regosol, a growth-stimulating effect of glyphosate soil application (hormesis) was detected. The results suggest that re-mobilisation of glyphosate may represent an additional transfer pathway for glyphosate to non-target plants which is strongly influenced by soil characteristics such as P fixation potential, content of plant-available iron, pH, cation exchange capacity, sand content and soil organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a.e.:

acid equivalent

AMPA:

aminomethylphosphonic acid

cv.:

cultivar

DAS:

days after sowing

n.d.:

not determined

N.S.:

not significant

SOM:

soil organic matter

WHC:

water holding capacity

References

  • Albers CN, Banta GT, Hansen PE, Jacobsen OS (2009) The influence of organic matter on sorption and fate of glyphosate in soil—comparing different soils and humic substances. Environ Pollut 157:2865–2870

    Article  PubMed  CAS  Google Scholar 

  • Alletto L, Coquet Y, Benoit P, Heddadj D, Barriuso E (2010) Tillage management effects on pesticide fate in soils. A review. Agron Sustain Dev 30:367–400

    Article  CAS  Google Scholar 

  • Allister C, Kogan M, Pino I (2005) Differential phytotoxicity of glyphosate in maize seedlings following applications to roots or shoot. Weed Research 45:27–32

    Article  Google Scholar 

  • Barja BC, Dos Santos AM (2005) Aminomethylphosphonic acid and glyphosate adsorption onto goethite: a comparative study. Environ Sci Tech 39:585–592

    Article  CAS  Google Scholar 

  • Barry GF (2009) Plants and plant cells exhibiting resistance to AMPA, and methods for making the same: United States Patent 7554012. Freepatentsonline, http://www.freepatentsonline.com/7554012.pdf Accessed 26 August 2010

  • Baylis AD (2000) Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manage Sci 56:299–308

    Article  CAS  Google Scholar 

  • Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manage Sci 64:441–456

    Article  CAS  Google Scholar 

  • Bott S, Tesfamariam T, Candan H, Cakmak I, Römheld V, Neumann G (2008) Glyphosate-induced impairment of plant growth and micronutrient status in glyphosate-resistant soybean (Glycine max L.). Plant Soil 312:185–194

    Article  CAS  Google Scholar 

  • Bott S, Lebender U, Kania A, Yoon DJ, Tesfamariam T, Ceylan Y, Römheld V, Neumann G (2010) Rhizosphere transfer of glyphosate after pre-crop herbicide application. New Phytol (submitted)

  • Cakmak I, Yazici A, Tutus Y, Ozturk L (2009) Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean. Europ J Agron 31:114–119

    Article  CAS  Google Scholar 

  • Candela L, Caballero J, Ronen D (2010) Glyphosate transport through weathered granite soils under irrigated and non-irrigated conditions—Barcelona, Spain. Sci Total Environ 408:2509–2516

    Article  PubMed  CAS  Google Scholar 

  • Cornish PS (1992) Glyphosate residues in a sandy soil affect tomato transplants. Aust J Exp Agric 32:395–399

    Article  CAS  Google Scholar 

  • Dion HM, Harsh JB, Hill HH Jr (2001) Competitive sorption between glyphosate and inorganic phosphate on clay minerals and low organic matter soils. J Radioanal Nucl Chem 249:385–390

    Article  CAS  Google Scholar 

  • Doublet J, Mamy L, Barriuso E (2009) Delayed degradation in soil of foliar herbicides glyphosate and sulcotrione previously absorbed by plants: consequences on herbicide fate and risk assessment. Chemosphere 77:582–589

    Article  PubMed  CAS  Google Scholar 

  • Drew MC (1975) Comparison of the effects of a localized supply of phosphate, nitrate, ammonium and potassium on the growth of the seminal root system, and the shoot, in barley. New Phytol 75:479–490

    Article  CAS  Google Scholar 

  • Duke S, Wauchope R, Hoagland R, Wills G (1983) Influence of glyphosate on uptake and translocation of calcium ion in soybean seedlings. Weed Res 23:133–139

    Article  CAS  Google Scholar 

  • Eker S, Ozturk L, Yazici A, Erenoglu B, Romheld V, Cakmak I (2006) Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) plants. J Agric Food Chem 54:10019–10025

    Article  PubMed  CAS  Google Scholar 

  • Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: A Unique Global Herbicide. American Chemical Society, Chap. 4, pp. 65–97

  • Fernandez MR, Zentner RP, Basnyat P, Gehl D, Selles F, Huber D (2009) Glyphosate associations with cereal diseases caused by Fusarium spp. in the Canadian Prairies. Europ J Agronomy 31:133–143

    Article  CAS  Google Scholar 

  • Geiger DR, Kapitan SW, Tucci MA (1986) Glyphosate inhibits photosynthesis and allocation of carbon to starch in sugar beet leaves. Plant Physiol 82:468–472

    Article  PubMed  CAS  Google Scholar 

  • Gericke VS, Kurmies B (1952) Die kolorimetrische Phosphorsäurebestimmung mit Ammonium-Vanadat-Molybdat und ihre Anwendung in der Pflanzenanalyse. Z Pflanzenernähr Bodenkd 59:235–247

    CAS  Google Scholar 

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup® herbicide. Rev Environ Contam Toxicol 167:35–120

    CAS  Google Scholar 

  • Gimsing AL, Borggaard OK (2002a) Competitive adsorption and desorption of glyphosate and phosphate on clay silicates and oxides. Clay Miner 37:509–515

    Article  CAS  Google Scholar 

  • Gimsing AL, Borggaard OK (2002b) Effect of phosphate on the adsorption of glyphosate on soils, clay minerals and oxides. Int J Environ Anal Chem 82:545–552

    Article  CAS  Google Scholar 

  • Gimsing AL, Borggaard OK, Bang M (2004) Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils. Eur J Soil Sci 55:183–191

    Article  CAS  Google Scholar 

  • Gordon B (2007) Manganese nutrition of glyphosate-resistant and conventional soybeans. Better Crops 91(4):12–13

    Google Scholar 

  • Hance RJ (1976) Adsorption of glyphosate by soils. Pestic Sci 7:363–366

    Article  CAS  Google Scholar 

  • Henry WB, Shaner DL, West MS (2007) Shikimate accumulation in sunflower, wheat, and proso millet after glyphosate application. Weed Sci 55:1–5

    Article  CAS  Google Scholar 

  • Johal GS, Huber DM (2009) Glyphosate effects on diseases of plants. Europ J Agronomy 31:144–152

    Article  CAS  Google Scholar 

  • Jursík M, Soukup J, Holec J, Venclová V (2010) Herbicide mode of actions and symptoms of plant injury by herbicides: inhibitors of amino acid biosynthesis | [Inhibitory biosyntézy aminokyselin]. Listy Cukrovarnicke a Reparske 126:250–253

    Google Scholar 

  • Kremer RJ, Means NE (2009) Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. Eur J Agron 31:153–161

    Article  CAS  Google Scholar 

  • Laitinen P, Siimes K, Rämö S, Jauhiainen L, Eronen L, Oinonen S, Hartikainen H (2008) Effects of soil phosporus status on environmental risk assessment of glyphosate and glufosinate-ammonium. J Environ Qual 37:830–838

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Römheld V (2002) Root induced changes in the availability of nutrients in the rhizosphere. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half, 3rd edn. Dekker, New York, pp 617–649

    Google Scholar 

  • Neumann G, Römheld V (2007) The release of root exudates as affected by the plant’s physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: Biochemistry and organic substances at the soil-plant interface, 1st edn. CRC, Boca Raton, pp 23–72

    Chapter  Google Scholar 

  • Neumann G, Kohls S, Landsberg E, Stock-Oliveira Souza K, Yamada T, Römheld V (2006) Relevance of glyphosate transfer to non-target plants via the rhizosphere. J Plant Dis Protect 20:963–969

    Google Scholar 

  • Neumann G, Bott S, Tesfamariam T, Römheld V (2008) Fehler mit Totalherbiziden vermeiden. DLZ 9:44–48

    Google Scholar 

  • Ozturk L, Yazici A, Eker S, Gokmen O, Römheld V, Cakmak I (2008) Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots. New Phytol 177:899–906

    Article  PubMed  CAS  Google Scholar 

  • Piccolo A, Celano G, Pietramellara G (1992) Adsorption of the herbicide glyphosate on a metal-humic acid complex. Sci Total Environ 123:77–82

    Article  Google Scholar 

  • Piccolo A, Celano G, Arienzo M, Mirabella A (1994) Adsorption and desorption of glyphosate in some European soils. J Environ Sci Health, Part B, Pestic Food Contam Agric Wastes 29:1105–1115

    Google Scholar 

  • Reddy KN, Rimando AM, Duke SO (2004) Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agric Food Chem 52:5139–5143

    Article  PubMed  CAS  Google Scholar 

  • Schnürer J, Clarholm M, Rosswall T (1985) Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol Biochem 17:611–618

    Article  Google Scholar 

  • Sergiev IG, Alexieva VS, Ivanov SV, Moskova II, Karanov EN (2006) The phenylurea cytokinin 4PU-30 protects maize plants against glyphosate action. Pestic Biochem Physiol 85:139–146

    Article  CAS  Google Scholar 

  • Sheals J, Sjöberg S, Persson P (2002) Adsorption of glyphosate on goethite: molecular characterization of surface complexes. Environ Sci Technol 36:3090–3095

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Shaner DL (1998) Rapid determination of glyphosate injury to plants and identification of glyphosate-resistant plants. Weed Technol 12:527–530

    CAS  Google Scholar 

  • Smiley RW, Ogg AG, Cook RJ (1992) Influence of glyphosate on Rhizoctonia root rot, growth, and yield of barley. Plant Dis 76:937–942

    Article  CAS  Google Scholar 

  • Sprankle P, Meggitt WF, Penner D (1975a) Rapid inactivation of glyphosate in the soil. Weed Sci 23:224–228

    CAS  Google Scholar 

  • Sprankle P, Meggitt WF, Penner D (1975b) Adsorption, mobility, and microbial degradation of glyphosate in the soil. Weed Sci 23:229–234

    CAS  Google Scholar 

  • Sprankle P, Meggitt WF, Penner D (1975c) Adsorption, action and translocation of glyphosate. Weed Sci 23:235–240

    CAS  Google Scholar 

  • Subramaniam V, Hoggard PE (1988) Metal complexes of glyphosate. J Agric Food Chem 36:1326–1329

    Article  CAS  Google Scholar 

  • Tesfamariam T (2003) Effects of P-deficiency induced Root exudation on Mo-acquisition in leguminous plants. diploma thesis, University of Hohenheim

  • Tesfamariam T, Bott S, Cakmak I, Römheld V, Neumann G (2009) Glyphosate in the rhizosphere-role of waiting times and different glyphosate binding forms in soils for phytotoxicity to non-target plants. Europ J Agronomy 31:126–132

    Article  CAS  Google Scholar 

  • VDLUFA (2004) Bestimmung von Magnesium, Natrium und den Spurennährstoffen Kupfer, Mangan, Zink, und Bor im Calciumchlorid/DTPA-Auszug. VDLUFA-Methodenbuch I. VDLUFA DLUFA-Verlag, Darmstadt, p A 6.4.1

    Google Scholar 

  • Velini ED, Alves E, Godoy MC, Meschede DK, Souza RT, Duke SO (2008) Glyphosate applied at low doses can stimulate plant growth. Pest Manage Sci 64:489–496

    Article  CAS  Google Scholar 

  • Vereecken H (2005) Mobility and leaching of glyphosate: a review. Pest Manag Sci 61:1139–1151

    Article  PubMed  CAS  Google Scholar 

  • Zobiole LHS, de Oliveira Jr RS, Huber DM, Constantin J, de Castro C, de Oliveira FA, de Oliveira Jr A (2010a) Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans. Plant Soil 328:57–69

    Article  CAS  Google Scholar 

  • Zobiole LHS, Oliveira RS Jr, Kremer RJ, Constantin J, Bonato CM, Muniz AS (2010b) Water use efficiency and photosynthesis of glyphosate-resistant soybean as affected by glyphosate. Pest Biochem Physiol 97:182–193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Bott.

Additional information

Responsible Editor: Ismail Cakmak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bott, S., Tesfamariam, T., Kania, A. et al. Phytotoxicity of glyphosate soil residues re-mobilised by phosphate fertilisation. Plant Soil 342, 249–263 (2011). https://doi.org/10.1007/s11104-010-0689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0689-3

Keywords

Navigation