Skip to main content

Advertisement

Log in

Cation-mediated cross-linking in natural organic matter: a review

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Interactions between cations and natural organic matter (NOM) are central for the stability of organic matter, formation of supramolecular NOM structure, formation of organo-mineral associations, soil aggregation and binding of organic contaminants. The effect of multivalent cations on environmental functionalities of NOM strongly depends on the relative importance between intramolecular complexation and intermolecular cross-linking, the degree of which will be determined by the spatial arrangement of the hydrophilic functional groups in NOM. This literature review seeks to evaluate the current state of the art regarding the relevance of intermolecular cross-links via bridges of multivalent cations. Cross-linking has been suggested to explain among others aggregate stability, retarded dissolved organic matter release, reduced organic matter (OM) solubility as well as increase in degree and nonlinearity of sorption or organic chemicals to NOM. Although the cross-linking mechanism has been suggested in numerous studies, it has not yet been verified directly. The dynamics of the intermolecular cross-links, their persistence as well as their interplay with OM and their influence on stability and bioavailability of organic chemicals is up to now unknown. The major challenge in this context is the development of a suitable combination of experimental and instrumental techniques and relating the results to molecular and physicochemical models on the basis of targeted combination of spectroscopic, molecular modelling and thermoanalytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed N, Varadachari C, Ghosh K (2002a) Soil clay-humus complexes II. Bridging cations and DTA studies. Aust J Soil Res 40(4):705–713

    Article  CAS  Google Scholar 

  • Ahmed N, Varadachari C, Ghosh K (2002b) Soil clay–humus complexes I. Alkali dissolution, TEM, and XRD studies. Aust J Soil Res 40:691–703

    Article  CAS  Google Scholar 

  • Ahn I-S, Choi H-S, Kim J-Y (2003) Comparison of nano-sized amphiphilic polyurethane (APU) particles with SDS, an anionic surfactant for the soil sorption and the extraction of phenanthrene from soil. Adsorption Science and Technology. In: Proceedings of the Pacific Basin Conference, 3rd, Kyongju, Republic of Korea, May 25–29, 2003, pp 392–397

  • Ahn W-Y, Kalinichev AG, Clark MM (2008) Effects of background cations on the fouling of polyethersulfone membranes by natural organic matter: experimental and molecular modeling study. J Membr Sci 309(1–2):128–140

    Article  CAS  Google Scholar 

  • Ahuja S, Dieckman SL, Gopalsami N, Raptis AC (1996) 1H NMR imaging and spectroscopy studies of the polymerization of acrylamide gels. Macromolecules 29(16):5356–5360

    Article  CAS  Google Scholar 

  • Allen HE, Hansen DJ (1996) The importance of trace metal speciation to water quality criteria. Water Environ Res 68(1):42–54

    Article  CAS  Google Scholar 

  • Aquino AJA, Tunega D, Haberhauer G, Gerzabek M, Lischka H (2000) A density functional theoretical study on solvated Al3+-oxalate complexes: structures and thermodynamic properties. Phys Chem Chem Phys 2(13):2845–2850

    Article  CAS  Google Scholar 

  • Aquino AJA, Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2001) A density-functional investigation of aluminium(III)-citrate complexes. Phys Chem Chem Phys 3(11):1979–1985

    Article  CAS  Google Scholar 

  • Aquino AJA, Tunega D, Pasalic H, Haberhauer G, Gerzabek MH, Lischka H (2008) The thermodynamic stability of hydrogen bonded and cation bridged complexes of humic acid models: a theoretical study. Chem Phys 349(1–3):69–76

    Article  CAS  Google Scholar 

  • Aquino AJA, Tunega D, Schaumann GE, Haberhauer G, Gerzabek MH, Lischka H (2009) Stabilizing capacity of water bridges in nanopore segments of humic substances: a theoretical investigation. J Phys Chem C 113:16468–16475

    Article  CAS  Google Scholar 

  • Aquino A, Tunega D, Pasalic H, Schaumann GE (2011a) Molecular dynamics simulations of water molecule-bridges in polar domains of humic acids. Environ Sci Technol 45(19):8411–8419

    Google Scholar 

  • Aquino AJA, Tunega D, Schaumann GE, Haberhauer G, Gerzabek MH, Lischka H (2011b) The functionality of cation bridges for binding polar groups in soil aggregates. Int J Quantum Chem 111:1531–1542

    Article  CAS  Google Scholar 

  • Aristilde L, Sposito G (2010) Binding of ciprofloxacin by humic substances: a molecular dynamics study. Environ Toxicol Chem 29(1):90–98

    Article  CAS  Google Scholar 

  • Ashbrook SE, Duer MJ (2006) Structural information from quadrupolar nuclei in solid state NMR. Concepts Magn Reson Part A 28A(3):183–248

    Article  CAS  Google Scholar 

  • Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31(7–8):697–710

    Article  CAS  Google Scholar 

  • Bardy M, Bonhomme C, Fritsch E, Maquet J, Hajjar R, Allard T, Derenne S, Calas G (2007) Al speciation in tropical podzols of the upper Amazon basin: a solid-state Al-27 MAS and MQMAS NMR study. Geochim Cosmochim Acta 71(13):3211–3222

    Article  CAS  Google Scholar 

  • Bayer JV, Jaeger F, Schaumann GE (2010) Proton nuclear magnetic resonance (NMR) relaxometry in soil science applications. Open Magn Reson J 3(open access): doi:10.2174/1874769801003010015

  • Belfiore LA, McCurdie MP, Ueda E (1993) Polymeric coordination complexes based on cobalt, nickel, and ruthenium that exhibit synergistic thermal properties. Macromolecules 26(25):6908–6917

    Article  CAS  Google Scholar 

  • Belfiore LA, McCurdie MP, Das PK (2001) Macromolecule-metal complexes: ligand field stabilization and thermophysical property modification. Polymer 42(25):09995–10006

    Article  CAS  Google Scholar 

  • Benedetti MF, Milne CJ, Kinniburgh DG, Van Riemsdijk WH, Koopal LK (1995) Metal ion binding to humic substances: application of the non-ideal competitive adsorption model. Environ Sci Technol 29(2):446–457

    Article  CAS  Google Scholar 

  • Bikiaris DN, Karayannidis GP (1996) Thermomechanical analysis of chain-extended PET and PBT. J Appl Polym Sci 60(1):55–61

    Article  CAS  Google Scholar 

  • Bonapasta AA, Buda F, Colombet P, Guerrini G (2002) Cross-linking of poly(vinyl alcohol) chains by Ca ions in macro-defect-free cements. Chem Mater 14(3):1016–1022

    Article  CAS  Google Scholar 

  • Bonten LTC, Groenenberg JE, Weng L, van Riemsdijk WH (2008) Use of speciation and complexation models to estimate heavy metal sorption in soils. Geoderma 146(1–2):303–310

    Article  CAS  Google Scholar 

  • Bryan ND, Hesketh N, Livens FR, Tipping E, Jones MN (1998) Metal ion-humic substance interaction: a thermodynamic study. J Chem Soc Faraday Trans 94(1):95–100

    Article  CAS  Google Scholar 

  • Bryan ND, Jones DM, Appleton M, Livens FR, Jones MN, Warwick P, King S, Hall A (2000) A physicochemical model of metal-humate interactions. Phys Chem Chem Phys 2(6):1291–1300

    Article  CAS  Google Scholar 

  • Cabaniss SE (2008) Quantitative structure-property relationships for predicting metal binding by organic ligands. Environ Sci Technol 42(14):5210–5216

    Article  CAS  Google Scholar 

  • Christl I, Milne CJ, Kinniburgh DG, Kretzschmar R (2001) Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding. Environ Sci Technol 35(12):2512–2517

    Article  CAS  Google Scholar 

  • Christl I, Metzger A, Heidmann I, Kretzschmar R (2005) Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding. Environ Sci Technol 39(14):5319–5326

    Article  CAS  Google Scholar 

  • Dai X, Reading M, Craig DQM (2009) Mapping amorphous material on a partially crystalline surface: nanothermal analysis for simultaneous characterisation and imaging of lactose compacts. J Pharm Sci 98(4):1499–1510

    Article  CAS  Google Scholar 

  • Davies G, Fataftah A, Cherkasskiy A, Ghabbour EA, Radwan A, Jansen SA, Kolla S, Paciolla MD, Sein JLT, Buermann W, Balasubramanian M, Budnick J, Xing B (1997) Tight metal binding by humic acids and its role in biomineralization. J Chem Soc Dalton Trans (21):4047–4060. doi:10.1039/a703145i

  • de Wit JCM, Van Riemsdijk WH, Nederlof MM, Kinniburgh DG, Koopal LK (1990) Analysis of ion binding on humic substances and the determination of intrinsic affinity distributions. Anal Chim Acta 232:189–207

    Article  Google Scholar 

  • de Wit JCM, van Riemsdijk WH, Koopal LK (1993a) Proton binding to humic substances. 1. Electrostatic effects. Environ Sci Technol 27(10):2005–2014

    Article  Google Scholar 

  • de Wit JCM, Vanriemsdijk WH, Koopal LK (1993b) Proton binding to humic substances. 2. Chemical heterogeneity and adsorption models. Environ Sci Technol 27(10):2015–2022

    Article  Google Scholar 

  • DeLapp RC, LeBoeuf EJ, Chen J, Gu B (2005) Advanced thermal characterization of fractionated natural organic matter. J Environ Qual 34(3):842–853

    Article  CAS  Google Scholar 

  • Dubus IG, Barriuso E, Calvet R (2001) Sorption of weak organic acids in soils: clofencet, 2, 4-D and salicylic acid. Chemosphere 45(6–7):767–774

    Article  CAS  Google Scholar 

  • Dudev T, Lim C (2004) Monodentate versus bidentate carboxylate binding in magnesium and calcium proteins: what are the basic principles? J Phys Chem B 108(14):4546–4557

    Article  CAS  Google Scholar 

  • Faust BC, Labiosa WB, Dai KH, Macfall JS, Browne BA, Ribeiro AA, Righter DD (1995) Speciation of aqueous mononuclear Al(Iii)-hydroxo and other Al(Iii) complexes at concentrations of geochemical relevance by Al-27 nuclear-magnetic-resonance spectroscopy. Geochim Cosmochim Acta 59(13):2651–2661

    Article  CAS  Google Scholar 

  • Fischer WR, Buttchereit F (2002) Sorption of dissolved organic matter on soil particles and its dependence on their surface-charge properties. In: Frimmel FH, Abbt-Braun G, Heumann KG, Hock B, Lüdemann H-D, Spiteller M (eds) Refractory organic substances in the environment. Wiley, Weinheim, pp 383–393

    Chapter  Google Scholar 

  • Gaiffe M, Duquet B, Tavant H, Tavant Y, Bruckert S (1984) Biological stability and physical behavior of an argillohumic complex placed under different conditions of saturation with calcium or potassium. Plant Soil 77(2–3):271–284

    Article  CAS  Google Scholar 

  • Ge Y, Hendershot W (2004) Evaluation of soil surface charge using the back-titration technique. Soil Sci Soc Am J 68(1):82–88

    Article  CAS  Google Scholar 

  • Ge Y, Hendershot W (2005) Modeling sorption of Cd, Hg, and pb in soils by the NICA-Donnan model. Soil Sediment Contam 14:53–69

    Article  CAS  Google Scholar 

  • Gerin PA, Dufrene YF (2003) Native surface structure of natural soil particles determined by combining atomic force microscopy and X-ray photoelectron spectroscopy. Colloid Surf B-Biointerf 28(4):295–305

    Article  CAS  Google Scholar 

  • Ghosh K, Schnitzer M (1980) Macromolecular structure of humic substances. Soil Sci 129:266–276

    Article  CAS  Google Scholar 

  • Grassi M, Daquino V (2005) Cd-113 NMR and fluorescence studies of multiple binding mechanisms of Cd(II) by the Suwannee River fulvic acid. Ann Di Chim 95(7–8):579–591

    Article  CAS  Google Scholar 

  • Guggenberger G, Zech W (1993) Dissolved Organic-carbon control in acid forest soils of the Fichtelgebirge (Germany) as revealed by distribution patterns and structural composition analyses. Geoderma 59(1–4):109–129

    Article  CAS  Google Scholar 

  • Hertkorn N, Perdue EM, Kettrup A (2004) A potentiometric and 113Cd NMR study of cadmium complexation by natural organic matter at two different magnetic field strengths. Anal Chem 76(21):6327–6341

    Article  CAS  Google Scholar 

  • Himes FL, Barber SA (1957) Chelating ability of soil organic matter. Proc Soil Sci Soc Am 21:368–375

    Article  CAS  Google Scholar 

  • Hue NV, Craddock GR, Adams F (1986) Effect of organic acids on aluminum toxicity in subsoils. Soil Sci Soc AM J 50:28–34

    Article  CAS  Google Scholar 

  • Hurrass J, Schaumann GE (2005) Is glassiness a common characteristic of soil organic matter? Environ Sci Technol 39(24):9534–9540

    Article  CAS  Google Scholar 

  • Iskrenova-Tchoukova E, Kalinichev AG, Kirkpatrick RJ (2010) Metal cation complexation with natural organic matter in aqueous solutions: molecular dynamics simulations and potentials of mean force. Langmuir 26(20):15909–15919

    CAS  Google Scholar 

  • Jaeger A, Schaumann GE, Bertmer M (2011) Optimized NMR spectroscopic strategy to characterize water dynamics in soil samples. Org Geochem. doi:10.1016/j.orggeochem.2011.03.021

  • Jansen S, Paciolla M, Ghabbour E, Davies G, Varnum JM (1996) The role of metal complexation in the solubility and stability of humic acid. Mater Sci Eng C-Biomimetic Mater Sens Syst 4(3):181–187

    Article  Google Scholar 

  • Jouany C, Chassin P (1987) Wetting properties of Fe and Ca Humates. Sci Total Environ 62:267–270

    Article  CAS  Google Scholar 

  • Kaiser K (1998) Fractionation of dissolved organic matter affected by polyvalent metal cations. Org Geochem 28(12):849–854

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165(4):277–304

    Article  CAS  Google Scholar 

  • Kalinichev AG, Kirkpatrick RJ (2007) Molecular dynamics simulation of cationic complexation with natural organic matter. Eur J Soil Sci 58(4):909–917

    Article  CAS  Google Scholar 

  • Kay BD, Assink RA (1986) High field 1H NMR studies of sol-gel kinetics. Mater Res Soc Symp Proc 73:157–164

    Article  CAS  Google Scholar 

  • Kinniburgh DG, Milne CJ, Benedetti MF, Pinheiro JP, Filius J, Koopal LK, van Riemsdijk WH (1996) Metal ion binding by humic acid: application to the NICA-Donnan model. Environ Sci Technol 30:1687–1698

    Article  CAS  Google Scholar 

  • Kinniburgh DG, van Riemsdijk WH, Koopal LK, Borkovec M, Benedetti MF, Avena MJ (1999) Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloid Surf A Physicochem Eng Asp 151(1–2):147–166

    Article  CAS  Google Scholar 

  • Koopal LK, Vanriemsdijk WH, Dewit JCM, Benedetti MF (1994) Analytical isotherm equations for multicomponent adsorption to heterogeneous surfaces. J Colloid Interf Sci 166(1):51–60

    Article  CAS  Google Scholar 

  • Kubicki JD (1999) Coordinatton changes of aluminum on mineral surfaces induced by protonation/deprotonation reactions. Abstracts of papers of the American chemical society 217: 006-GEOC

  • Kubicki JD, Blake GA, Apitz SE (1996) Molecular orbital models of aqueous aluminum-acetate complexes. Geochim Cosmochim Acta 60(24):4897–4911

    Article  CAS  Google Scholar 

  • Kubicki JD, Sykes D, Apitz SE (1999) Ab initio calculation of aqueous aluminum and aluminum-carboxylate complex energetics and Al-27 NMR chemical shifts. J Phys Chem A 103(7):903–915

    Article  CAS  Google Scholar 

  • Kummert R, Stumm W (1980) The surface complexation of organic acids on hydrous [gamma]-Al2O3. J Colloid Interf Sci 75(2):373–385

    Article  CAS  Google Scholar 

  • Lang F, Egger H, Kaupenjohann M (2005) Size and shape of lead-organic associations. Colloid Surf A Physicochem Eng Asp 265(1–3):95–103

    Article  CAS  Google Scholar 

  • Leboeuf EJ, Weber WJ Jr (1997) A distributed reactivity model for sorption by soils and sediments. 8. Sorben organic domains: discovery of humic acid glass transition and an argument for a polymer-based model. Environ Sci Technol 31:1697

    Article  CAS  Google Scholar 

  • LeBoeuf EJ, Weber WJ (2000) Macromolecular characteristics of natural organic matter. 1. Insights from glass transition and enthalpic relaxation behavior. Environ Sci Technol 34(17):3623–3631

    Article  CAS  Google Scholar 

  • Lens PNL, Hemminga MA (1998) Nuclear magnetic resonance in environmental engineering: principles and applications. Biodegradation 9(6):393–409

    Article  CAS  Google Scholar 

  • Lofts S, Woof C, Tipping E, Clarke N, Mulder J (2001) Modelling pH buffering and aluminium solubility in European forest soils. Eur J Soil Sci 52(2):189–204

    Article  CAS  Google Scholar 

  • Lombi E, Susini J (2009) Synchrotron-based techniques for plant and soil science: opportunities, challenges and future perspectives. Plant Soil 320(1–2):1–35

    Article  CAS  Google Scholar 

  • Lopez-Capel E, Sohi SP, Gaunt JL, Manning DAC (2005) Use of thermogravimetry-differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Sci Soc AM J 69(1):136–140

    CAS  Google Scholar 

  • Lores EM, Pennock JR (1998) The effect of salinity on binding of Cd, Cr, Cu and Zn to dissolved organic matter. Chemosphere 37(5):861–874

    Article  CAS  Google Scholar 

  • Lu Y, Pignatello JJ (2004) Sorption of apolar aromatic compounds to soil humic acid particles affected by aluminum(III) ion cross-linking. J Environ Qual 33(4):1314–1321

    Article  CAS  Google Scholar 

  • Lu XQ, Vassallo AM, Johnson WD (1997) Thermal stability of humic substances and their metal forms: an investigation using FTIR emission spectroscopy. J Anal Appl Pyrol 43(2):103–113

    Article  CAS  Google Scholar 

  • Manceau A, Boisset M-C, Sarret G, Hazemann J-L, Mench M, Cambier P, Prost R (1996) Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy. Environ Sci Technol 30(5):1540–1552

    Article  CAS  Google Scholar 

  • Mao J, Ding G, Xing B (2002) Domain mobility of humic acids investigated with one- and two-dimensional nuclear magnetic resonance: support for dual-mode sorption model. Commun Soil Sci Plant Anal 33(9 & 10):1679–1688

    Article  CAS  Google Scholar 

  • Marinsky JA, Ephraim J (1986) A unified physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids). 1. Analysis of the influence of polyelectrolyte properties on protonation equilibria in ionic media: fundamental concepts. Environ Sci Technol 20(4):349–354

    Article  CAS  Google Scholar 

  • Matynia A, Lenoir T, Causse B, Spadini L, Jacquet T, Manceau A (2010) Semi-empirical proton binding constants for natural organic matter. Geochim Cosmochim Acta 74(6):1836–1851

    Article  CAS  Google Scholar 

  • McBride MB (1978) Transition metal bonding in humic acid: an ESR study. Soil Sci 126:200–209

    Article  CAS  Google Scholar 

  • Nederlof MM, Dewit JCM, Vanriemsdijk WH, Koopal LK (1993) Determination of proton affinity distributions for humic substances. Environ Sci Technol 27(5):846–856

    Article  CAS  Google Scholar 

  • Newman JK, McCormick CL (1994) Water-soluble copolymers.52. Na-23 Nmr-studies of ion-binding to anionic polyelectrolytes-poly(sodium 2-acrylamido-2-methylpropanesulfonate), poly(sodium 3-acrylamido-3-methylbutanoate), poly(sodium acrylate), and poly(sodium galacturonate). Macromolecules 27(18):5114–5122

    Article  CAS  Google Scholar 

  • Oades J (1988) The retention of organic matter in soils. Biogeochemistry 5(1):35–70

    Article  CAS  Google Scholar 

  • Oste LA, Temminghoff EJM, Riemsdijk WHv (2002) Solid-solution partitioning of organic matter in soils as influenced by an increase in pH or Ca concentration. Environ Sci Technol 36:208–214

    Article  CAS  Google Scholar 

  • Parfitt RL, Yuan G, Theng BKG (1999) A C-13-NMR study of the interactions of soil organic matter with aluminium and allophane in podzols. Eur J Soil Sci 50(4):695–700

    Article  CAS  Google Scholar 

  • Paul A, Stosser R, Zehl A, Zwirnmann E, Vogt RD, Steinberg CEW (2006) Nature and abundance of organic radicals in natural organic matter: effect of pH and irradiation. Environ Sci Technol 40(19):5897–5903

    Article  CAS  Google Scholar 

  • Perdue EM, Lytle CR (1983) A distribution model for binding of protons and metal ions by humic substances. Environ Sci Technol 17(11):654–660

    Article  CAS  Google Scholar 

  • Piccolo A (2002) The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agron 75:57–134

    Article  CAS  Google Scholar 

  • Piccolo A, Conte P, Trivellone E, van Lagen B, Buurman P (2002) Reduced heterogeneity of a lignite humic acid by preparative HPSEC following interaction with an organic acid. Characterization of size-separates by Pyr-GC-MS and 1H-NMR spectroscopy. Environ Sci Technol 36(1):76–84

    Article  CAS  Google Scholar 

  • Pinheiro JP, Mota AM, Benedetti MF (1999) Lead and calcium binding to fulvic acids: salt effect and competition. Environ Sci Technol 33(19):3398–3404

    Article  CAS  Google Scholar 

  • Plaschke M, Rothe J, Denecke MA, Fanghanel T (2004) Soft X-ray spectromicroscopy of humic acid europium(III) complexation by comparison to model substances. J Electron Spectros Relat Phenomena 135(1):53–62

    Article  CAS  Google Scholar 

  • Plaschke M, Rothe J, Altmaier M, Denecke MA, Fanghanel T (2005) Near edge X-ray absorption fine structure (NEXAFS) of model compounds for the humic acid/actinide ion interaction. J Electron Spectros Relat Phenomena 148(3):151–157

    Article  CAS  Google Scholar 

  • Plaschke M, Rothe J, Armbruster MK, Denecke MA, Naber A, Geckeis H (2010) Humic acid metal cation interaction studied by spectromicroscopy techniques in combination with quantum chemical calculations. J Synchrotron Radiat 17(2):158–165

    Article  CAS  Google Scholar 

  • Plaza C, Brunetti G, Senesi N, Polo A (2005a) Proton binding to humic acids from organic amendments and amended soils by the NICA-Donnan model. Environ Sci Technol 39(17):6692–6697

    Article  CAS  Google Scholar 

  • Plaza C, Senesi N, Polo A, Brunetti G (2005b) Acid-base properties of humic and fulvic acids formed during composting. Environ Sci Technol 39:7141–7146

    Article  CAS  Google Scholar 

  • Rudolph N, Schaumann GE (2006) Effect of lead and calcium on glassiness in soil organic matter. Humic substances: linking structure to functions. In: Frimmel FH, Abbt-Braun G (eds) Proceedings of the 13th meeting of the international humic substances society in Karlsruhe, vol 45-II. Karlsruhe, Universität Karlsruhe, pp 833–836

  • Santana AL, Noda LK, Pires ATN, Bertolino JR (2004) Poly(4-vinylpyridine)/cupric salt complexes: spectroscopic and thermal properties. Polym Test 23(7):839–845

    Article  CAS  Google Scholar 

  • Schaumann GE (2000) Effect of CaCl2 on the kinetics of the release of dissolved organic matter (DOM). J Plant Nutr Soil Sci 163(5):523–529

    Article  CAS  Google Scholar 

  • Schaumann GE (2005) Matrix relaxation and change of water state during hydration of peat. Colloid Surf A Physicochem Eng Asp 265(1–3):163–170

    Article  CAS  Google Scholar 

  • Schaumann GE (2006) Soil organic matter beyond molecular structure. 1. Macromolecular and supramolecular characteristics. J Plant Nutr Soil Sci 169(2):145–156

    Article  CAS  Google Scholar 

  • Schaumann GE, Bertmer M (2008) Do water molecules bridge soil organic matter molecule segments? Eur J Soil Sci 59(3):423–429

    Article  CAS  Google Scholar 

  • Schaumann GE, Kunhi Mouvenchery Y (2011) Potential of AFM-nanothermal analysis to study the microscale thermal characteristics in soils and natural organic matter (NOM). J Soils Sediment. doi:10.1007/s11368-011-0443-3

  • Schaumann GE, LeBoeuf EJ (2005) Glass transitions in peat: their relevance and the impact of water. Environ Sci Technol 39(3):800–806

    Article  CAS  Google Scholar 

  • Schaumann GE, Thiele-Bruhn S (2011) Molecular modelling of soil organic matter: squaring the circle? Geoderma 166(1):1–14

  • Schaumann GE, Hobley E, Hurraß J, Rotard W (2005a) H-NMR relaxometry to monitor wetting and swelling kinetics in high organic matter soils. Plant Soil 275(1–2):1–20

    Article  CAS  Google Scholar 

  • Schaumann GE, LeBoeuf EJ, DeLapp RC, Hurraß J (2005b) Thermomechanical analysis of air-dried whole soil samples. Thermochim Acta 436(1–2):83–89

    Article  CAS  Google Scholar 

  • Schaumann GE, Lang F, Frank J (2006) Do multivalent cations induce cross-links in DOM precipitates? Humic substances: linking structure to functions. In: Frimmel FH, Abbt-Braun G (eds) Proceedings of the 13th meeting of the international humic substances society in Karlsruhe, vol 45-II. Karlsruhe, Universität Karlsruhe, pp 941–944

  • Schaumann GE, Diehl D, Schwarz J, Bayer JV, Bachmann J, Woche SK, Göbel M-O, Marschner B, Shchegolikhina A, Lang F, Krüger J, Thiele-Bruhn S, Schneckenburger T (2010) Restructuring of biogeochemical interfaces: role of cations and heat treatment. In: 19th World Congress of Soil Science (WCSS) Brisbane, IUSS

  • Scheel T, Haumaier L, Ellerbrock RH, Ruhlmann J, Kalbitz K (2008a) Properties of organic matter precipitated from acidic forest soil solutions. Org Geochem 39(10):1439–1453

    Article  CAS  Google Scholar 

  • Scheel T, Jansen B, van Wijk AJ, Verstraten JM, Kalbitz K (2008b) Stabilization of dissolved organic matter by aluminium: a toxic effect or stabilization through precipitation? Eur J Soil Sci 59(6):1122–1132

    Article  CAS  Google Scholar 

  • Schlautmann MA, Morgan JJ (1993) Binding of a fluorescent hydrophobic organic probe by dissolved humic substances and organically-coated aluminum oxide surfaces. Environ Sci Technol 27:2523–2532

    Article  Google Scholar 

  • Schnitzer MaIH (1967) Thermogravimetric analysis of the salts and metal complexes of a soil fulvic acid. Geochim Cosmochim Acta 31:7–15

    Article  CAS  Google Scholar 

  • Schnitzer M (1978) Humic substances: chemistry and reactions. In: Schnitzer M, Khan SU (eds) Soil organic matter. Amsterdam, Elsevier

    Google Scholar 

  • Schnitzer M, Kodama H (1972) Differential thermal analysis of metal-fulvic acid salts and complexes. Geoderma 7(1–2):93–103

    Article  CAS  Google Scholar 

  • Schnitzer M, Skinner SIM (1965) Organo-metallic interactions in soils: 4. Carboxyl and hydroxyl groups in organic matter and metal retention. Soil Sci 99(4):278–280

    Article  CAS  Google Scholar 

  • Senesi N (1990) Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals. Part I. The electron spin resonance approach. Anal Chim Acta 232:51–75

    Article  CAS  Google Scholar 

  • Senesi N, Bocian DF, Sposito G (1985) Electron spin resonance investigation of copper(II) complexation by soil fulvic acid. Soil Sci Soc Am J (United States) 49(1):114–119

    Article  CAS  Google Scholar 

  • Skyllberg U, Magnusson T (1995) Cations adsorbed to soil organic matter: a regulatory factor for the release of organic carbon and hydrogen ions from soils to waters. Water Air Soil Pollut 85(3):1095–1100

    Article  CAS  Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74(1–2):65–105

    Article  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. New York, Wiley

    Google Scholar 

  • Tapparo A, Heath SL, Jordan PA, Moore GR, Powell AK (1996) Aluminium carboxylates in aqueous solutions. 4. Crystal structure and solution-state study of K[Al(mal)(2)(H2O)(2)]center dot 2H(2)O (H(2)mal equals malonic acid). J Chem Soc-Dalton Trans (8):1601–1606. doi:10.1039/dt9960001601

  • Thomas F, Masion A, Bottero JY, Rouiller J, Genevrier F, Boudot D (1991) Aluminum(Iii) speciation with acetate and oxalate: a potentiometric and Al-27 Nmr-study. Environ Sci Technol 25(9):1553–1559

    Article  CAS  Google Scholar 

  • Thomas F, Masion A, Bottero JY, Canet D (1993) Al-27 Nmr-study of the hydrolysis and condensation of organically complexed aluminum. Abstracts of papers of the American chemical society 205: 18-ENVR

  • Tipping E (1993a) Modelling the binding of europium and the actinides by humic substances. Radiochim Acta 62(3):141–152

    CAS  Google Scholar 

  • Tipping E (1993b) Modelling the competition between alkaline-earth cations and trace-metal species for binding by humic substances. Environ Sci Technol 27(3):520–529

    Article  CAS  Google Scholar 

  • Tipping E (1998) Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat Geochem 4(1):3–48

    Article  CAS  Google Scholar 

  • Tipping E, Hurley MA (1992) A unifying model of cation binding by humic substances. Geochim Cosmochim Acta 56(10):3627–3641

    Article  CAS  Google Scholar 

  • Tunega D, Haberhauer G, Gerzabek M, Lischka H (2000) Interaction of acetate anion with hydrated Al3 + cation: a theoretical study. J Phys Chem A 104(29):6824–6833

    Article  CAS  Google Scholar 

  • Van Riemsdijk WH, De Wit JCM, Mous SLJ, Koopal LK, Kinniburgh DG (1996) An analytical isotherm equation (CONICA) for nonideal mono- and bidentate competitive ion adsorption to heterogeneous surfaces. J Colloid Interf Sci 183(1):35–50

    Article  Google Scholar 

  • Van Riemsdijk WH, Koopal LK, Kinniburgh DG, Benedetti MF, Weng LP (2006) Modelling the interactions between humics, ions, and mineral surfaces. Environ Sci Technol 40(24):7473–7480

    Article  CAS  Google Scholar 

  • Vasiliadis B, Antelo J, Iglesias A, Lopez R, Fiol S, Arce F (2007) Analysis of the variable charge of two organic soils by means of the NICA-Donnan model. Eur J Soil Sci 58:1358–1363

    Article  CAS  Google Scholar 

  • Weber T, Allard T, Tipping E, Benedetti MF (2006) Modelling iron binding to organic matter. Environ Sci Technol 40(24):7488–7493

    Article  CAS  Google Scholar 

  • Welter E, Calmano W, Mangold S, Troger L (1999) Chemical speciation of heavy metals in soils by use of XAFS spectroscopy and electron microscopical techniques. Fresenius’ J Anal Chem 364(3):238–244

    Article  CAS  Google Scholar 

  • Weng LP, Temminghoff EJM, Lofts S, Tipping E, Van Riemsdijk WH (2002) Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ Sci Technol 36(22):4804–4810

    Article  CAS  Google Scholar 

  • Wershaw RL (2004) Evaluation of conceptual models of natural organic matter (humus) from a consideration of the chemical and biochemical processes of humification scientific investigations report 2004-5121. GA Norton and CG Groat. Reston, Virginia, US Department of the Interior, US Geological Survey 49

  • Wieder RK (1990) Metal cation binding to sphagnum peat and sawdust: relation to wetland treatment of metal-polluted waters. Water Air Soil Pollut 53(3–4):391–400

    CAS  Google Scholar 

  • Xia K, Bleam W, Helmke PA (1997) Studies of the nature of binding sites of first row transition elements bound to aquatic and soil humic substances using X-ray absorption spectroscopy. Geochim Cosmochim Acta 61(11):2223–2235

    Article  CAS  Google Scholar 

  • Xu X, Kalinichev AG, Kirkpatrick RJ (2006) 133Cs and Cl-35 NMR spectroscopy and molecular dynamics modelling of Cs + and Cl − complexation with natural organic matter. Geochim Cosmochim Acta 70(17):4319–4331

    Article  CAS  Google Scholar 

  • Yang Y, Ratte D, Smets BF, Pignatello JJ, Grasso D (2001) Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption. Chemosphere 43(8):1013–1021

    Article  CAS  Google Scholar 

  • Yasunaga H, Ando I (1993a) Dynamic behaviour of water in hydro-swollen crosslinked polymer gel as studied by PGSE 1H NMR and pulse 1H NMR. Polym Gels Netw 1(2):83–92

    Article  CAS  Google Scholar 

  • Yasunaga H, Ando I (1993b) Effect of cross-linking on the molecular motion of water in polymer gel as studied by pulse 1H NMR and PGSE 1H NMR. Polym Gels Netw 1(4):267–274

    Article  CAS  Google Scholar 

  • Young KD, LeBoeuf EJ (2000) Glass transition behaviour in a peat humic acid and an aquatic fulvic acid. Environ Sci Technol 34(21):4549–4553

    Article  CAS  Google Scholar 

  • Yuan G, Xing B (2001) Effects of metal cations on sorption and desorption of organic compounds in humic acids. Soil Sci 166(2):107–115

    Article  CAS  Google Scholar 

  • Zega TJ, Alexander CMO, Busemann H, Nittler LR, Hoppe P, Stroud RM, Young AF (2010) Mineral associations and character of isotopically anomalous organic material in the Tagish Lake carbonaceous chondrite. Geochim Cosmochim Acta 74(20):5966–5983

    Article  CAS  Google Scholar 

  • Zhang JX, Bunker M, Chen XY, Parker AP, Patel N, Roberts CJ (2009) Nanoscale thermal analysis of pharmaceutical solid dispersions. Int J Pharm 380(1–2):170–173

    Article  CAS  Google Scholar 

  • Zhang GX, Liu XT, Sun K, Zhao Y, Lin CY (2010) Sorption of tetracycline to sediments and soils: assessing the roles of pH, the presence of cadmium and properties of sediments and soils. Frontiers Environ Sci Eng China 4(4):421–429

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DFG within the priority programme SPP 1315 “Biogeochemical Interfaces in Soil” project SCHA849/8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele E. Schaumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunhi Mouvenchery, Y., Kučerík, J., Diehl, D. et al. Cation-mediated cross-linking in natural organic matter: a review. Rev Environ Sci Biotechnol 11, 41–54 (2012). https://doi.org/10.1007/s11157-011-9258-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-011-9258-3

Keywords

Navigation