Skip to main content
Log in

Numerical Simulation of 3D Liquid–Gas Distribution in Porous Media by a Two-Phase TRT Lattice Boltzmann Method

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The 3D description of the soil structure at the pore scale level can help to elucidate the biological functioning of soil. The water–air distribution in the 3D-pore space is of particular interest because it determines the diffusion pathways of nutrients and the localisation of active soil microorganisms. We used the Shan–Chen interparticle-potential approach to simulate spontaneous phase separation in complex academic and real 3D-porous media using the advanced TRT lattice Boltzmann scheme. The equation of state and phase diagram were calculated and the model was verified using hydrostatic laws. The 3D pattern of water/air interface in two complex academic pore geometries was accurately computed. Finally, 3D maps of static liquid–gas distribution were simulated in a real 3D X-ray computed tomography image obtained from an undisturbed soil column sampled in a silty clay loam soil. The simulated soil sample of 1.7 cm3 was described at a voxel-resolution of 60 μm. The range of the simulated saturations (from 0.5 to 0.9) was in a good agreement with the expected saturations calculated from the phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrenholz, B.: Massively parallel simulations of multiphase and multicomponent flows using lattice Boltzmann methods. PhD Thesis. Technischen Universitat Carolo-Wilhelmina, Braunschweig (2009)

  • Aidun C.K., Clausen J.R.: Lattice–Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439–472 (2010)

    Article  Google Scholar 

  • Bashforth F., Adams J.C.: An Attempt to Test the Theories of Capillary Action. Cambridge University Press, Cambridge (1883)

    Google Scholar 

  • Bear J., Rubinstein B., Fel L.: Capillary pressure curve for liquid menisci in a cubic assembly of spherical particles below irreducible saturation. Transp. Porous Med. 89(1), 63–73 (2011)

    Article  Google Scholar 

  • Bouasse H.: Capillarité et phénomènes superficiels. Delagrave Ed., Paris (1924)

    Google Scholar 

  • Chang Q., Alexander J.I.D.: Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method. Microfluid. Nanofluid. 2, 309–326 (2006)

    Article  Google Scholar 

  • d’Humières D., Ginzburg I., Krafczyk M., Lallemand P., Luo L.S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. A 360, 437–451 (2002)

    Article  Google Scholar 

  • d’Humières D., Ginzburg I.: Viscosity independent numerical errors for Lattice Boltzmann models: from recurrence equations to “magic” collision numbers. Comput. Math. Appl. 58(5), 823–840 (2009)

    Article  Google Scholar 

  • Gennes P.G.: Wetting: static and dynamics. Rev. Mod. Phys. 57(3), 827–863 (1985)

    Article  Google Scholar 

  • Gennes P.G., Brochard-Wyart F., Quéré D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New York (2004)

    Google Scholar 

  • De Maio A., Palpacelli S., Succi S.: A new boundary condition for three-dimensional Lattice Boltzmann simulations of capillary filling in rough micro-channels. Commun. Comput. Phys. 9(5), 1284–1292 (2011)

    Google Scholar 

  • Dong B., Yan Y.Y., Li W.Z.: LBM simulation of viscous fingering phenomenon in immiscible displacement of two fluids in porous media. Transp. Porous Med. 88, 293–314 (2011)

    Article  Google Scholar 

  • Frisch U., d’Humières D., Hasslacher B., Lallemand P., Pomeau Y., Rivet J.P.: Lattice gas hydrodynamics in two and threee dimensions. Complex Systems 1, 649–707 (1987)

    Google Scholar 

  • Ginzburg I., d’Humières D.: Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68(6), 066614 (2003)

    Article  Google Scholar 

  • Ginzburg I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28, 1171–1195 (2005)

    Article  Google Scholar 

  • Ginzburg I., Verhaeghe F., d’Humières D.: Two-relaxation time lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3, 427–478 (2008a)

    Google Scholar 

  • Ginzburg I., Verhaeghe F., d’Humières D.: Study of simple hydrodynamics solutions with the two-relaxation-times lattice Boltzmann scheme. Commun. Comput. Phys. 3, 519–581 (2008b)

    Google Scholar 

  • Ginzburg I., d’Humières D., Kuzmin A.: Optimal stability of advection-diffusion lattice Boltzmann models with two-relaxation times for positive/negative equilibrium. J. Stat. Phys. 139, 1090–1143 (2010)

    Article  Google Scholar 

  • Gustensen A.K., Rothman D.H., Zaleski S., Anetti G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43, 4320–4327 (1991)

    Article  Google Scholar 

  • Gvirtzman H., Roberts P.V.: Pore scale spatial analysis of two immiscible fluids in porous media. Water Resour. Res. 27(6), 1165–1176 (1991)

    Article  Google Scholar 

  • Hartland S., Hartley R.W.: Axisymmetric Fluid–Liquid Interfaces. Elsevier, Amsterdam (1976)

    Google Scholar 

  • He X., Chen S., Doolen G.D.: A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comput. Phys. 146, 282–300 (1998)

    Article  Google Scholar 

  • Hilpert M., Miller C.T.: Pore-morphology-based simulation of drainage in totally wetting porous media. Adv. Water Resour. 24, 243–255 (2001)

    Article  Google Scholar 

  • Huang H., Thorne D.T., Schaap M.G., Sukop M.C.: Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys. Rev. E 76, 066701 (2007)

    Article  Google Scholar 

  • Huang H., Shuaishuai Z.L., Lu X.Y.: Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media. Int. J. Numer. Meth. Fluids 61, 341–354 (2009)

    Article  Google Scholar 

  • Huang H., Wang L., Lu X.Y.: Evaluation of three lattice Boltzmann models for multiphase flows in porous media. Comput. Math. Appl. 61, 3606–3617 (2011)

    Article  Google Scholar 

  • Jonquière A.: Note sur la série \({\sum_{n=1}^{n=\infty} \frac{x^n}{n^s}}\) . B. Soc. Math. Fr. 17, 142–152 (1889)

    Google Scholar 

  • Kemmit S.J.K., Lnyon C.V., Waite I.S., Wen Q., Addiscott T.M., Bird N.R.A., O’Donnell A.G., Brookes P.C.: Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass—a new perspective. Soil Biol. Biochem. 40, 61–73 (2008)

    Article  Google Scholar 

  • Kobayashi K., Inamuro T., Ogino F.: Numerical simulation of advancing interface in a micro heterogeneous channel by Lattice Boltzmann Method. J. Chem. Eng. Jpn. 39(3), 257–266 (2006)

    Article  Google Scholar 

  • Kuzmin, A.: Multiphase simulations with lattice boltzmann scheme. PhD Thesis, University of Calgary, Calgary (2009)

  • Lallemand P., Luo L.S.: Theory of the lattice Boltzmann method: dispersion, isotropy, Galilean invariance and stability. Phys. Rev. E 61, 6546 (2000)

    Article  Google Scholar 

  • Latva-kokko M., Rothman D.H.: Static contact angle in lattice Boltzmann models of immiscible fluids. Phys. Rev. E 72, 046701 (2005)

    Article  Google Scholar 

  • Lin C.L., Videla A.R., Miller J.D.: Advanced three-dimensional multiphase flow simulation in porous media reconstructed from X-ray microtomography using the He-Chen-Zhang lattice Boltzmann model. Flow Meas. Instrum. 21, 255–261 (2010)

    Article  Google Scholar 

  • Malcolm J.D., Paynter H.M.: Simultaneous determination of contact angle and interfacial tension from sessile drop measurements. J. Colloid Interf. Sci. 82(2), 269–275 (1981)

    Article  Google Scholar 

  • Martys N.S., Chen H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53(1), 743–750 (1996)

    Article  Google Scholar 

  • Melrose J.C.: Model calculations for capillary condensation. Am. Inst. Chem. Eng. J. 12(5), 986–994 (1966)

    Article  Google Scholar 

  • Monga O., Bousso M., Garnier P., Pot V.: 3D geometric structures and biological activity: application to microbial soil organic matter decomposition in pore space. Ecol. Model. 216, 291–302 (2008)

    Article  Google Scholar 

  • Monga O., Bousso M., Garnier P., Pot V.: Using pore space 3D geometrical modelling to simulate biological activity: impact of soil structure. Comput. Geosci. 35, 1789–1801 (2009)

    Article  Google Scholar 

  • Or D., Smets B.F., Wraith J.M., Dechesne A., Friedman S.P.: Physical constraints affecting bacterial habitats and activity in unsaturated porous media—a review. Adv. Water Resour. 30, 1505–1527 (2007)

    Article  Google Scholar 

  • Orr F.M., Scriven L.E., Rivas A.P.: Pendular rings between solids: meniscus properties and capillary force. J. Fluid Mech. 67, 723–742 (1975)

    Article  Google Scholar 

  • Padday J.F.: Tables of the profiles of axisymmetric menisci. J. Electroanal. Chem. 37, 313–316 (1972)

    Article  Google Scholar 

  • Prat M.: On the influence of pore shape, contact angle and film flows on drying of capillary porous media. Int. J. Heat Mass Tran. 50, 1455–1468 (2007)

    Article  Google Scholar 

  • Premnath K.N., Abraham J.: Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow. J. Comput. Phys. 224, 539–559 (2007)

    Article  Google Scholar 

  • Raiskinmäki P., Koponen A., Merikoski J., Timonen J.: Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method. Comp. Mater. Sci. 18, 7–12 (2000)

    Article  Google Scholar 

  • Ramstad T., Øren P.E., Bakke S.: Simulation of two-phase flow in reservoir rocks using a lattice Boltzman method. SPE J. 15(4), 917–927 (2010)

    Google Scholar 

  • Rayleigh J.W.S.: On the theory of the capillary tube. Proc. R. Soc. Lond. A 92, 184–195 (1916)

    Article  Google Scholar 

  • Rose W.: Volumes and surface areas of pendular rings. J. Appl. Phys. 29(4), 687–691 (1958)

    Article  Google Scholar 

  • Schimel J.P., Weintraub M.N.: The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem. 35, 549–563 (2003)

    Article  Google Scholar 

  • Schjonning P., Thomsen I.K., Moldrup P., Christensen B.T.: Linking soil microbial activity to water and air-phase contents and diffusivities. Soil Sci. Soc. Am. J. 67, 156–165 (2003)

    Article  Google Scholar 

  • Schmieschek S., Hartinssg J.: Contact angle determination in multicomponent lattice Boltzmann simulations. Commun. Comput. Phys. 9(5), 1165–1178 (2011)

    Google Scholar 

  • Shan X., Chen H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815–1820 (1993)

    Article  Google Scholar 

  • Shan X., Chen H.: Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49(4), 2941–294 (1994)

    Google Scholar 

  • Smucker A.J.M., Park E.J., Dorner J., Horn R.: Soil micropore development and contributions to soluble carbon transport within macroaggregates. Vadose Zone J. 6, 282–290 (2007)

    Article  Google Scholar 

  • Sukop M.C., Or D.: Lattice Boltzmann method for modeling liquid–vapor interface configurations in porous media. Water Resour. Res. 40, W01509 (2004). doi:10.1029/2003WR002333

    Article  Google Scholar 

  • Swift M.R., Orlandini E., Osborn W.R., Yeomans J.M.: Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys. Rev. E 54, 5041–5052 (1996)

    Article  Google Scholar 

  • Vogel H.J., Tölke J., Schulz V.P., Krafczyk M., Roth K.: Comparison of a lattice-Boltzmann model, a full-morphology model, and a pore network model for determining capillary pressure-saturation relationships. Vadose Zone J. 4, 380–388 (2005)

    Article  Google Scholar 

  • Wiklund H.S., Lindström S.B., Uesaka T.: Boundary condition considerations in Lattice Boltzmann formulations of wetting binary fluids. Comput. Phys. Commun. 182(10), 2192–2200 (2011)

    Article  Google Scholar 

  • Yan Y.Y., Zu Y.Q.: A lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio. J. Comput. Phys. 227, 763–775 (2007)

    Article  Google Scholar 

  • Yoshino M., Mizutani Y.: Lattice Boltzmann simulation of liquid–gas flow through solid bodies in a square duct. Math. Comput. Simul. 72, 264–269 (2006)

    Article  Google Scholar 

  • Yu Z., Fan L.S.: Multirelaxation–time interaction-potential-based lattice Boltzmann model for two-phase flow. Phys. Rev. E 82, 046708 (2010)

    Article  Google Scholar 

  • Zhang R.L., Di Q.F., Wang X.L., Gu C.Y: Numerical study of wall wettabilities and topography on drag reduction effect in micro-channel flow by Lattice Botzmann Method. J. Hydrodyn. 22(3), 366–372 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Genty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genty, A., Pot, V. Numerical Simulation of 3D Liquid–Gas Distribution in Porous Media by a Two-Phase TRT Lattice Boltzmann Method. Transp Porous Med 96, 271–294 (2013). https://doi.org/10.1007/s11242-012-0087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-012-0087-9

Keywords

Navigation