Skip to main content
Log in

Dissolved Inorganic Contaminants in a Floodplain Soil: Comparison of In Situ Soil Solutions and Laboratory Methods

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The applicability of laboratory tests for the prediction of soil solution composition and concentrations of inorganic contaminants is still under debate. Therefore, we carried out two batch-leaching tests differing in their liquid/solid ratios and column experiments (saturated flow, two flow velocities, four flow interruptions ranging from 4 h to 21 days) with a contaminated humic horizon (total contents: As, 196 mg kg−1; Cd, 4 mg kg−1; Cr, 202 mg kg−1; Cu, 227 mg kg−1; Ni, 64 mg kg−1; Pb, 308 mg kg−1; Zn, 1,176 mg kg−1) from a Mollic Fluvisol near the rivers Elbe and Saale (Germany) and compared the aqueous contaminant concentrations with those of soil solutions obtained in situ with ceramic suction cups on a monthly basis between 2002 and 2006. Contaminant release in the field slightly depended on the water regime, pH, and redox potential and was characterized by partially high concentrations (e.g., As, 47 µg l−1; Cd, 136 µg l−1; Ni, 328 µg l−1; Zn, 8.68 mg l−1), which exceeded the German inspection values. Metal concentrations obtained in batch-leaching tests partially fitted to those determined in the soil solution and to those from the column experiments even irrespective of the varying liquid/solid ratios. The column experiments yielded realistic concentrations of Cr, Cu, Ni, and Pb and their ranges. Furthermore, they provided an insight into release kinetics and release processes as well as into potential contaminant release due to enforced reducing conditions. As column experiments allow a larger temporal sampling resolution and enable quickly to manipulate experimental conditions, they are a useful complement of soil solution monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ad-hoc AG Boden. (2005). Bodenkundliche Kartieranleitung (KA 5). Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Antelo, J., Avena, M., Fiol, S., Lopez, R., & Arce, F. (2005). Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface. Journal of Colloid and Interface Science, 285, 476–486.

    Article  CAS  Google Scholar 

  • BBodSchV (1999). Verordnung zur Durchführung des Bundes-Bodenschutzgesetzes (Bundes-Bodenschutz- und Altlastenverordnung, BBodSchV vom 16.7.1999), BGBl, I. 1554–1582.

  • Berger, W., Scheuering, I., & Peiffer, S. (2006). Emissionsabschätzung aus kontaminierten Materialien—was können Labormethoden hierzu leisten? altlasten spektrum, 15, 154–161.

    CAS  Google Scholar 

  • Brümmer, G. W. (1974). Redoxpotentiale und Redoxprozesse von Mangan-, Eisen- und Schwefelverbindungen in hydromorphen Böden und Sedimenten. Geoderma, 12, 207–222.

    Article  Google Scholar 

  • Brusseau, M. L., Rao, P. S. C., Jessup, R. E., & Davidson, J. M. (1989). Flow interruption: A method for investigating sorption nonequilibrium. Journal of Contaminant Hydrology, 4, 223–240.

    Article  CAS  Google Scholar 

  • Cancès, B., Juliot, F., Morin, G., Laperche, V., Alvarez, L., Proux, O., et al. (2005). XAS evidence of As(V) association with iron oxyhydroxides in a contaminated soil at a former arsenical pesticide processing plant. Environmental Science and Technology, 39, 9398–9405.

    Article  CAS  Google Scholar 

  • Davranche, M., & Bollinger, J.-C. (2000). Heavy metals desorption from synthesized and natural iron and manganese oxyhydroxides: Effect of reductive conditions. Journal of Colloid and Interface Science, 227, 531–539.

    Article  CAS  Google Scholar 

  • Delay, M., Lager, T., Schulz, H. D., & Frimmel, F. H. (2007). Comparison of leaching tests to determine and quantify the release of inorganic contaminants in demolition waste. Waste Management, 27, 248–255.

    Article  CAS  Google Scholar 

  • Devai, I., Patrick, W. H., Jr., Neue, H.-U., DeLaune, R. D., Kongchum, M., & Rinklebe, J. (2005). Methyl mercury and heavy metal content in soils of rivers Saale and Elbe (Germany). Analytical Letters, 38, 1037–1048.

    CAS  Google Scholar 

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009a). Trace metal behaviour in estuarine and riverine floodplain soils and sediments. A review. The Science of the Total Environment, 407, 3972–3985.

    Article  CAS  Google Scholar 

  • Du Laing, G., Meers, E., Dewispelaere, M., Vandecasteele, B., Rinklebe, J., Tack, F. M. G., et al. (2009b). Heavy metal mobility in intertidal sediments of the Scheldt estuary: Field monitoring. Science of the Total Environment, 407, 2919–2930.

    Article  CAS  Google Scholar 

  • Du Laing, G., Chapagain, S. K., Dewispelaere, M., Meers, E., Kazama, F., Tack, F. M. G., et al. (2009c). Presence and mobility of arsenic in estuarine wetland soils of the Scheldt estuary (Belgium). Journal of Environmental Monitoring, 11, 873–881.

    Article  CAS  Google Scholar 

  • Erses, A. S., & Onay, T. T. (2003). In situ heavy metal attenuation in landfills under methanogenic conditions. Journal of Hazardous Materials, 99, 159–175.

    Article  CAS  Google Scholar 

  • Fakih, M., Davranche, M., Dia, A., Nowack, B., Morin, G., Petitjean, P., et al. (2009). Environmental impact of As(V)-Fe oxyhydroxide reductive dissolution: an experimental insight. Chemical Geology, 259, 290–303.

    Article  CAS  Google Scholar 

  • Förstner, U., Heise, S., Schwartz, R., Westrich, B., & Ahlf, W. (2004). Historical contaminated sediments and soils at the river basin scale. Examples from the Elbe river catchment area. Journal of Soils and Sediments, 4, 247–260.

    Article  Google Scholar 

  • Gambrell, R. P. (1994). Trace and toxic metals in wetlands—A review. Journal of Environmental Quality, 23, 883–891.

    CAS  Google Scholar 

  • IUSS/ISRIC/FAO. (2006). World reference base for soil resources 2006. Rome: FAO.

    Google Scholar 

  • Kalbe, U., Berger, W., Eckhardt, J., & Simon, F.-G. (2008). Evaluation of leaching and extraction procedures for soil and waste. Waste Management, 28, 1027–1038.

    Article  CAS  Google Scholar 

  • Kandpal, G., Srivastava, P. C., & Ram, B. (2005). Kinetics of desorption of heavy metals from polluted soils: Influence of soil type and metal source. Water, Air, and Soil Pollution, 161, 353–363.

    Article  CAS  Google Scholar 

  • Kowalik, C., Kraft, J., & Einax, J. W. (2003). The situation of the German Elbe tributaries—Development of the loads in the last 10 years. Acta Hydrochimica et Hydrobiologica, 31, 334–345.

    Article  CAS  Google Scholar 

  • Krüger, F., & Gröngröft, A. (2003). The difficult assessment of heavy metal contamination in soils and plants in Elbe river floodplains. Acta Hydrochimica et Hydrobiologica, 31, 436–443.

    Article  CAS  Google Scholar 

  • Lager, T., Delay, M., Karius, V., Hamer, K., Frimmel, F. H., & Schulz, H. D. (2006). Determination and quantification of the release of inorganic contaminants from municipal waste incineration ash. Acta Hydrochimica et Hydrobiologica, 34, 73–85.

    Article  CAS  Google Scholar 

  • Mehra, O. P., & Jackson, M. L. (1960). Iron oxide removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317–327.

    Article  Google Scholar 

  • Overesch, M., Rinklebe, J., Broll, G., & Neue, H.-U. (2007). Metals and arsenic in soils and corresponding vegetation at central Elbe River floodplains (Germany). Environmental Pollution, 145, 800–812.

    Article  CAS  Google Scholar 

  • Rennert, T., & Mansfeldt, T. (2004). Bewertung der potenziellen Grundwasserbelastung von deponierten Hochofengasschlämmen. Zeitschrift für Umweltchemie und Ökotoxikologie, 16, 151–154.

    CAS  Google Scholar 

  • Rennert, T., & Mansfeldt, T. (2006). Release of trace metals, sulfate and complexed cyanide from soils contaminated with gas-purifier wastes. Environmental Pollution, 139, 86–94.

    Article  CAS  Google Scholar 

  • Rennert, T., & Rinklebe, J. (2009). Release of Ni and Zn from contaminated floodplain soils under saturated flow conditions. Water, Air and Soil Pollution, in press.

  • Rinklebe, J. (2004). Differenzierung von Auenböden der Mittleren Elbe und Quantifizierung des Einflusses von deren Bodenkennwerten auf die mikrobielle Biomasse und die Bodenenzymaktivitäten von ß-Glucosidase, Protease und alkalischer Phosphatase. PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Germany.

  • Rinklebe, J., Stubbe, A., Staerk, H.-J., Wennrich, R., & Neue, H.-U. (2005). Factors controlling the dynamics of As, Cd, Zn and Pb in alluvial soils of the Elbe River (Germany). In W. G. Lyon, J. Hong & R. K. Reddy (Eds.), Proceedings of environmental science and technology (Vol. 2, pp. 265–271). New Orleans: American Science Press.

    Google Scholar 

  • Rinklebe, J., Franke, C., & Neue, H.-U. (2007). Aggregation of floodplain soils as an instrument for predicting concentrations of nutrients and pollutants. Geoderma, 141, 210–223.

    Article  CAS  Google Scholar 

  • Sauve, S., Hendershot, W., & Allen, H. E. (2000). Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environmental Science and Technology, 34, 1125–1131.

    Article  CAS  Google Scholar 

  • Scheithauer, M. (2003). Aktuelle Ergebnisse des F&E-Vorhabens “Emissionsabschät-zung/Prüfwerte”. In R. Röder & C. Schertler Münchener Beiträge zur Sickerwasserprognose—Forschung und Praxis (vol. 56, pp. 111–128). München: Bayerisches Landesamt für Wasserwirtschaft.

  • Schröder, T. J., van Riemsdijk, W. H., van der Zee, S. E. A. T. M., & Vink, J. P. M. (2008). Monitoring and modeling of the solid-solution partitioning of metals and As in a river floodplain redox sequence. Applied Geochemistry, 23, 2350–2363.

    Article  CAS  Google Scholar 

  • Schwertmann, U. (1964). Differenzierung der Eisenoxide des Bodens durch Extraktion mit saurer Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde, 105, 194–202.

    Article  CAS  Google Scholar 

  • Schwertmann, U., Süsser, P., & Nätscher, L. (1987). Protonenpuffersubstanzen in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde, 150, 174–178.

    Article  CAS  Google Scholar 

  • Sukreeyapongse, O., Holm, P. E., Strobel, B. W., Panichsakpatana, S., Magid, J., & Hansen, H. C. B. (2002). pH-dependent release of cadmium, copper, and lead from natural and sludge-amended soils. Journal of Environmental Quality, 31, 1901–1909.

    CAS  Google Scholar 

  • Toride, N., Leji, F. J., & van Genuchten, M Th. (1995). The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Riverside: US Salinity Laboratory.

    Google Scholar 

  • van der Sloot, H. A. (1996). Developments in evaluating environmental impact from utilization of bulk inert wastes using laboratory leaching tests and field verification. Waste Management, 16, 65–81.

    Article  Google Scholar 

  • van der Sloot, H. A., Comans, R. N. J., & Hjelmar, O. (1996). Similarities in the leaching behavior of trace contaminants from waste, stabilized waste, construction materials and soils. Science of the Total Environment, 178, 111–126.

    Article  Google Scholar 

  • Wehrer, M., & Totsche, K. U. (2003). Detection of non-equilibrium contaminant release in soil columns: Delineation of experimental conditions by numerical simulations. Journal of Plant Nutrition and Soil Science, 166, 475–483.

    Article  CAS  Google Scholar 

  • Wehrer, M., & Totsche, K. U. (2008). Effective rates of heavy metal release from alkaline wastes—Quantified by column outflow experiments and inverse simulations. Journal of Contaminant Hydrology, 97, 53–66.

    Article  CAS  Google Scholar 

  • Weigand, H., & Totsche, K. U. (1998). Flow and reactivity effects on dissolved organic matter transport in soil columns. Soil Science Society of America Journal, 62, 1268–1274.

    Article  CAS  Google Scholar 

  • Zeien, H., & Brümmer, G. W. (1989). Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Böden. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 59, 505–510.

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by the German Research Foundation (DFG; RE 2251), the European Fond for Regional Development (EFRE), and the Ministry of Agriculture and Environment of the Federal State Saxony-Anhalt (FKZ 76213/08/01). We would like to thank K. Greef, K. Kinze, Dr. M. Thönnessen, J. Steffen, Dr. R. Wennrich, and Dr. H.-J. Staerk for various analyses as well as H. Dittrich for technical assistance during the field monitoring.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Rennert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rennert, T., Meißner, S., Rinklebe, J. et al. Dissolved Inorganic Contaminants in a Floodplain Soil: Comparison of In Situ Soil Solutions and Laboratory Methods. Water Air Soil Pollut 209, 489–500 (2010). https://doi.org/10.1007/s11270-009-0217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0217-3

Keywords

Navigation