Skip to main content
Log in

A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Chemically mediated interactions are hypothesized to be essential for ecosystem functioning as co-occurring organisms can influence the performance of each other by metabolic means. A metabolomics approach can support a better understanding of such processes but many problems cannot be addressed due to a lack of appropriate co-culturing and sampling strategies. This is particularly true for planktonic organisms that live in complex but very dilute communities in the open water. Here we present a co-culturing device that allows culturing of microalgae and bacteria that are physically separated but can exchange dissolved or colloidal chemical signals. Identical growth conditions for both partners as well as high metabolite diffusion rates between the culturing chambers are ensured. This setup allowed us to perform a metabolomic survey of the effect of the bacterium Dinoroseobacter shibae on the diatom Thalassiosira pseudonana. GC–MS measurements revealed a pronounced influence of the bacterium on the metabolic profile of T. pseudonana cells with especially intracellular amino acids being up-regulated in co-cultures. Despite the influence on diatom metabolism, the bacterium has little influence on the growth of the algae. This might indicate that the observed metabolic changes represent an adaptive response of the diatoms. Such interactions might be crucial for metabolic fluxes within plankton communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Admiraal, W., Laane, R., & Peletier, H. (1984). Participation of diatoms in the amino acid cycle of coastal waters; uptake and excretion in cultures. Marine Ecology-Progress Series, 15(3), 303–306.

    Article  CAS  Google Scholar 

  • Admiraal, W., Peletier, H., & Laane, R. (1986). Nitrogen metabolism of marine planktonic diatoms—excretion, assimilation and cellular pools of free amino-acids in 7 species with different cell size. Journal of Experimental Marine Biology and Ecology, 98(3), 241–263.

    Article  CAS  Google Scholar 

  • Anderson, M. J., & Willis, T. J. (2003). Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology, 84(2), 511–525.

    Article  Google Scholar 

  • Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Martinez, D., Putnam, N. H., et al. (2004). The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science, 306(5693), 79–86.

    Article  PubMed  CAS  Google Scholar 

  • Bates, S. S., Douglas, D. J., Doucette, G. J., & Leger, C. (1995). Enhancement of domoic acid production by reintroducing bacteria to axenic cultures of the diatom Pseudo-nitzschia multiseries. Natural Toxins, 3(6), 428–435.

    Article  PubMed  CAS  Google Scholar 

  • Beardall, J., Berman, T., Heraud, P., Omo Kadiri, M., Light, B. R., Patterson, G., et al. (2001). A comparison of methods for detection of phosphate limitation in microalgae. Aquatic Sciences-Research Across Boundaries, 63(1), 107–121.

    Article  CAS  Google Scholar 

  • Bruckner, C. G., Rehm, C., Grossart, H. P., & Kroth, P. G. (2011). Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environmental Microbiology, 13(4), 1052–1063.

    Article  PubMed  CAS  Google Scholar 

  • Cole, J. J. (1982). Interactions between bacteria and algae in aquatic ecosystems. Annual Review of Ecology and Systematics, 13(1), 291–314.

    Article  Google Scholar 

  • Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J., & Smith, A. G. (2005). Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature, 438(7064), 90–93.

    Article  PubMed  CAS  Google Scholar 

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281(5374), 237–240.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, K. J., & Syrett, P. J. (1986). Utilization of l-lysine and l-arginine by the diatom Phaeodactylum tricornutum. Marine Biology, 90(2), 159–163.

    Article  CAS  Google Scholar 

  • Flynn, K. J., & Wright, C. R. N. (1986). The simultaneous assimilation of ammonium and l-arginine by the marine diatom Phaeodactylum tricornutum Bohlin. Journal of Experimental Marine Biology and Ecology, 95(3), 257–269.

    Article  CAS  Google Scholar 

  • Gehrke, C. W., & Leimer, K. (1971). Trimethylsilylation of amino acids—derivatization and chromatography. Journal of Chromatography, 57(2), 219–238.

    PubMed  CAS  Google Scholar 

  • Groene, T. (1995). Biogenic production and consumption of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the marine pelagic zone—a review. Journal of Marine Systems, 6(3), 191–209.

    Article  Google Scholar 

  • Ianora, A., Bentley, M. G., Caldwell, G. S., Casotti, R., Cembella, A. D., Engstrom-Ost, J., et al. (2011). The relevance of marine chemical ecology to plankton and ecosystem function: An emerging field. Marine Drugs, 9(9), 1625–1648.

    Article  PubMed  CAS  Google Scholar 

  • Ianora, A., Miralto, A., Poulet, S. A., Carotenuto, Y., Buttino, I., Romano, G., et al. (2004). Aldehyde suppression of copepod recruitment in blooms of a ubiquitous planktonic diatom. Nature, 429(6990), 403–407.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, A., Rystad, B., & Skoglund, L. (1972). The use of dialysis culture in phytoplankton studies. Journal of Experimental Marine Biology and Ecology, 8(3), 241–248.

    Article  Google Scholar 

  • Kobayashi, K., Takata, Y., & Kodama, M. (2009). Direct contact between Pseudo-nitzschia multiseries and bacteria is necessary for the diatom to produce a high level of domoic acid. Fisheries Science, 75(3), 771–776.

    Article  CAS  Google Scholar 

  • Kolber, Z., Zehr, J., & Falkowski, P. (1988). Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II. Plant Physiology, 88(3), 923.

    Article  PubMed  CAS  Google Scholar 

  • Legrand, C., Rengefors, K., Fistarol, G. O., & Granéli, E. (2003). Allelopathy in phytoplankton—biochemical, ecological and evolutionary aspects. Phycologia, 42(4), 406–419.

    Article  Google Scholar 

  • Leimer, K. R., Rice, R. H., & Gehrke, C. W. (1977). Complete mass-spectra of N-trifluoroacetyl-N-butyl esters of amino acids. Journal of Chromatography, 141(2), 121–144.

    Article  PubMed  CAS  Google Scholar 

  • Linares, F. (2006). Effect of dissolved free amino acids (DFAA) on the biomass and production of microphytobenthic communities. Journal of Experimental Marine Biology and Ecology, 330(2), 469–481.

    Article  CAS  Google Scholar 

  • Lippemeier, S., Hartig, P., & Colijn, F. (1999). Direct impact of silicate on the photosynthetic performance of the diatom Thalassiosira weissflogii assessed by on- and off-line PAM fluorescence measurements. Journal of Plankton Research, 21(2), 269–283.

    Article  Google Scholar 

  • Liu, S., Guo, Z., Li, T., Huang, H., & Lin, S. (2011). Photosynthetic efficiency, cell volume, and elemental stoichiometric ratios in Thalassirosira weissflogii under phosphorus limitation. Chinese Journal of Oceanology and Limnology, 29(5), 1048–1056.

    Article  CAS  Google Scholar 

  • Maier, I., & Calenberg, M. (1994). Effect of extracellular Ca2+ and Ca2+ antagonists on the movement and chemoorientation of male gametes of Ectocarpus siliculosus (Phaeophyceae). Botanica Acta, 107, 451–460.

    CAS  Google Scholar 

  • Matsuo, Y., Imagawa, H., Nishizawa, M., & Shizuri, Y. (2005). Isolation of an algal morphogenesis inducer from a marine bacterium. Science, 307(5715), 1598.

    Article  PubMed  CAS  Google Scholar 

  • Mayali, X., & Azam, F. (2004). Algicidal bacteria in the sea and their impact on algal blooms. Journal of Eukaryotic Microbiology, 51(2), 139–144.

    Article  PubMed  Google Scholar 

  • McVeigh, I., & Brown, W. H. (1954). In vitro growth of Chlamydomonas chlamydogama Bold and Haematococcus pluvialis Flotow em. Wille in mixed cultures. Bulletin of the Torrey Botanical Club, 81(3), 218–233.

    Article  CAS  Google Scholar 

  • Myklestad, S., Holm-Hansen, O., Vårum, K. M., & Volcani, B. E. (1989). Rate of release of extracellular amino acids and carbohydrates from the marine diatom Chaetoceros affinis. Journal of Plankton Research, 11(4), 763–773.

    Article  CAS  Google Scholar 

  • Nilsson, C., & Sundback, K. (1996). Amino acid uptake in natural microphytobenthic assemblages studied by microautoradiography. Hydrobiologia, 332(2), 119–129.

    Article  CAS  Google Scholar 

  • Nylund, G. M., Persson, F., Lindegarth, M., Cervin, G., Hermansson, M., & Pavia, H. (2010). The red alga Bonnemaisonia asparagoides regulates epiphytic bacterial abundance and community composition by chemical defence. FEMS Microbiology Ecology, 71(1), 84–93.

    Article  PubMed  CAS  Google Scholar 

  • Nylund, G. M., Weinberger, F., Rempt, M., & Pohnert, G. (2011). Metabolomic assessment of induced and activated chemical defence in the invasive red alga Gracilaria vermiculophylla. PLoS One, 6(12), e29359.

    Article  PubMed  CAS  Google Scholar 

  • Paul, C., Barofsky, A., Vidoudez, C., & Pohnert, G. (2009). Diatom exudates influence metabolism and cell growth of co-cultured diatom species. Marine Ecology-Progress Series, 389, 61–70.

    Article  Google Scholar 

  • Paul, C., & Pohnert, G. (2011). Interactions of the algicidal bacterium Kordia algicida with diatoms: Regulated protease excretion for specific algal lysis. PLoS One, 6(6), e21032.

    Article  PubMed  CAS  Google Scholar 

  • Pohnert, G. (2000). Wound-activated chemical defense in unicellular planktonic algae. Angewandte Chemie International Edition, 39(23), 4352–4354.

    CAS  Google Scholar 

  • Pohnert, G. (2012). How to explore the sometimes unusual chemistry of aquatic defence chemicals. In C. Brönmark, & L. A. Hansson (Eds.), Chemical Ecology in Aquatic Systems: Oxford University Press.

  • Pohnert, G., Steinke, M., & Tollrian, R. (2007). Chemical cues, defence metabolites and the shaping of pelagic interspezific interactions. Trends in Ecology & Evolution, 22(4), 198–204.

    Article  Google Scholar 

  • Roy, S., & Legendre, L. (1979). DCMU—enhanced fluorescence as an index of photosynthetic activity in phytoplankton. Marine Biology, 55(2), 93–101.

    Article  CAS  Google Scholar 

  • Selander, E., Jakobsen, H. H., Lombard, F., & Kiorboe, T. (2011). Grazer cues induce stealth behavior in marine dinoflagellates. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4030–4034.

    Article  PubMed  CAS  Google Scholar 

  • Selander, E., Thor, P., Toth, G., & Pavia, H. (2006). Copepods induce paralytic shellfish toxin production in marine dinoflagellates. Proceedings of the Royal Society B Biological Sciences, 273(1594), 1673–1680.

    Article  CAS  Google Scholar 

  • Seyedsayamdost, M. R., Case, R. J., Kolter, R., & Clardy, J. (2011). The jekyll-and-hyde chemistry of Phaeobacter gallaeciensis. Nature Chemistry, 3(4), 331–335.

    Article  PubMed  CAS  Google Scholar 

  • Sieg, R. D., Poulson-Ellestad, K. L., & Kubanek, J. (2011). Chemical ecology of the marine plankton. Natural Product Reports, 28(2), 388–399.

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer, A., & Pohnert, G. (2010). Direct quantification of dimethylsulfoniopropionate (DMSP) with hydrophilic interaction liquid chromatography/mass spectrometry. Journal of Chromatography B, 878(31), 3238–3242.

    Article  CAS  Google Scholar 

  • Steinke, M., Malin, G., & Liss, P. S. (2002). Trophic interactions in the sea: An ecological role for climate relevant volatiles? Journal of Phycology, 38(4), 630–638.

    Article  CAS  Google Scholar 

  • Teeling, H., Fuchs, B. M., Becher, D., Klockow, C., Gardebrecht, A., Bennke, C. M., et al. (2012). Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science, 336(6081), 608–611.

    Article  PubMed  CAS  Google Scholar 

  • Van Donk, E., Ianora, A., & Vos, M. (2011). Induced defences in marine and freshwater phytoplankton: A review. Hydrobiologia, 668(1), 3–19.

    Article  Google Scholar 

  • Vanelslander, B., Paul, C., Grueneberg, J., Prince, E. K., Gillard, J., Sabbe, K., et al. (2012). Daily bursts of biogenic cyanogen bromide (BrCN) control biofilm formation around a marine benthic diatom. Proceedings of the National Academy of Sciences of the United States of America, 109(7), 2412–2417.

    Article  PubMed  CAS  Google Scholar 

  • Vardi, A., Formiggini, F., Casotti, R., De Martino, A., Ribalet, F., Miralto, A., et al. (2006). A stress surveillance system based on calcium and nitric oxide in marine diatoms. PLoS Biology, 4(3), 411–419.

    Article  CAS  Google Scholar 

  • Vidoudez, C., Casotti, R., Bastianini, M., & Pohnert, G. (2011). Quantification of dissolved and particulate polyunsaturated aldehydes in the Adriatic Sea. Marine Drugs, 9(4), 500–513.

    Article  PubMed  CAS  Google Scholar 

  • Vidoudez, C., & Pohnert, G. (2008). Growth phase-specific release of polyunsaturated aldehydes by the diatom Skeletonema marinoi. Journal of Plankton Research, 30(11), 1305.

    Article  CAS  Google Scholar 

  • Vidoudez, C., & Pohnert, G. (2012). Comparative metabolomics of the diatom Skeletonema marinoi in different growth phases. Metabolomics, 8, 654–669.

    Article  CAS  Google Scholar 

  • Wagner, C., Sefkow, M., & Kopka, J. (2003). Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry, 62(6), 887–900.

    Article  PubMed  CAS  Google Scholar 

  • Wagner-Döbler, I., Ballhausen, B., Berger, M., Brinkhoff, T., Buchholz, I., Bunk, B., et al. (2010). The complete genome sequence of the algal symbiont Dinoroseobacter shibae: A hitchhiker’s guide to life in the sea. ISME Journal, 4(1), 61–77.

    Article  PubMed  Google Scholar 

  • Wolfe, G. V., Steinke, M., & Kirst, G. O. (1997). Grazing-activated chemical defence in a unicellular marine alga. Nature, 387(6636), 894–897.

    Article  CAS  Google Scholar 

  • Yamasaki, Y., Nagasoe, S., Matsubara, T., Shikata, T., Shimasaki, Y., Oshima, Y., et al. (2007). Allelopathic interactions between the bacillariophyte Skeletonema costatum and the raphidophyte Heterosigma akashiwo. Marine Ecology-Progress Series, 339, 83.

    Article  CAS  Google Scholar 

  • Yamasaki, Y., Shikata, T., Nukata, A., Ichiki, S., Nagasoe, S., Matsubara, T., et al. (2009). Extracellular polysaccharide-protein complexes of a harmful alga mediate the allelopathic control it exerts within the phytoplankton community. ISME Journal, 3(7), 808–817.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J. Z., & Fischer, C. J. (2006). A simplified resorcinol method for direct spectrophotometric determination of nitrate in seawater. Marine Chemistry, 99(1–4), 220–226.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Jena School for Microbial Communication (JSMC) and the International Leibniz Research School for Microbial and Biomolecular Interactions for grants to CP and MAM. Further we acknowledge financial support within the framework of a Lichtenberg Professorship. The lab of US Schubert is acknowledged for access to the flow cytometry facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Pohnert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, C., Mausz, M.A. & Pohnert, G. A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics 9, 349–359 (2013). https://doi.org/10.1007/s11306-012-0453-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0453-1

Keywords

Navigation