Skip to main content
Log in

Toxicity, dioxin-like activities, and endocrine effects of DDT metabolites—DDA, DDMU, DDMS, and DDCN

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Background, aim, and scope

2,2-bis(chlorophenyl)-1,1,1-trichloroethane (DDT) metabolites, other than those routinely measured [i.e., 2,2-bis(chlorophenyl)-1,1-dichloroethylene (DDE) and 2,2-bis(chlorophenyl)-1,1-dichloroethane (DDD)], have recently been detected in elevated concentrations not only in the surface water of Teltow Canal, Berlin, but also in sediment samples from Elbe tributaries (e.g., Mulde and Havel/Spree). This was paralleled by recent reports that multiple other metabolites could emerge from the degradation of parent DDT by naturally occurring organisms or by interaction with some heavy metals. Nevertheless, only very few data on the biological activities of these metabolites are available to date. The objective of this communication is to evaluate, for the first time, the cytotoxicity, dioxin-like activity, and estrogenicity of the least-studied DDT metabolites.

Methods

Four DDT metabolites, p,p′-2,2-bis(chlorophenyl)-1-chloroethylene (DDMU), p,p′-2,2-bis(chlorophenyl)-1-chloroethane (DDMS), p,p′-2,2-bis(4-ch1oropheny1)acetonitrile (DDCN), and p,p′-2,2-bis(chlorophenyl)acetic acid (DDA), were selected based on their presence in environmental samples in Germany such as in sediments from the Mulde River and Teltow Canal. O,p′-DDT was used as reference in all assays. Cytotoxicity was measured by neutral red retention with the permanent cell line RTG-2 of rainbow trout (Oncorhynchus mykiss). Dioxin-like activity was determined using the 7-ethoxyresorufin-O-deetylase assay. The estrogenic potential was tested in a dot blot/RNAse protection-assay with primary hepatocytes from male rainbow trout (O. mykiss) and in a yeast estrogen screen (YES) assay.

Results

All DDT metabolites tested revealed a clear dose–response relationship for cytotoxicity in RTG-2 cells, but no dioxin-like activities with RTL-W1 cells. The dot blot/RNAse protection-assay demonstrated that the highest non-toxic concentrations of these DDT metabolites (50 μM) had vitellogenin-induction potentials comparable to the positive control (1 nM 17β-estradiol). The estrogenic activities could be ranked as o,p′-DDT > p,p′-DDMS > p,p′-DDMU > p,p′-DDCN. In contrast, p,p′-DDA showed a moderate anti-estrogenic effect. In the YES assay, besides the reference o,p′-DDT, p,p′-DDMS and p,p′-DDMU displayed dose-dependent estrogenic potentials, whereas p,p′-DDCN and p,p′-DDA did not show any estrogenic potential.

Discussion

The reference toxicant o,p′-DDT displayed a similar spectrum of estrogenic activities similar to 17β-estradiol, however, with a lower potency. Both p,p′-DDMS and p,p′-DDMU were also shown to have dose-dependent estrogenic potentials, which were much lower than the reference o,p′-DDT, in both the vitellogenin and YES bioassays. Interestingly, p,p′-DDA did not show estrogenic activity but rather displayed a tendency towards anti-estrogenic activity by inhibiting the estrogenic effect of 17β-estradiol. The results also showed that the p,p′-metabolites DDMU, DDMS, DDCN, and DDA do not show any dioxin-like activities in RTL-W1 cells, thus resembling the major DDT metabolites DDD and DDE.

Conclusions

All the DDT metabolites tested did not exhibit dioxin-like activities in RTL-W1 cells, but show cytotoxic and estrogenic activities. Based on the results of the in vitro assays used in our study and on the reported concentrations of DDT metabolites in contaminated sediments, such substances could, in the future, pose interference with the normal reproductive and endocrine functions in various organisms exposed to these chemicals. Consequently, there is an urgent need to examine more comprehensively the risk of environmental concentrations of the investigated DDT metabolites using in vivo studies. However, this should be paralleled also by periodic evaluation and monitoring of the current levels of the DDT metabolites in environmental matrices.

Recommendations and perspectives

Our results clearly point out the need to integrate the potential ecotoxicological risks associated with the “neglected” p,p′-DDT metabolites. For instance, these DDT metabolites should be integrated into sediment risk assessment initiatives in contaminated areas. One major challenge would be the identification of baseline data for such risk assessment. Further studies are also warranted to determine possible additive, synergistic, or antagonistic effects that may interfere with the fundamental cytotoxicity and endocrine activities of these metabolites. For a more conclusive assessment of the spectrum of DDT metabolites, additional bioassays are needed to identify potential anti-estrogenic, androgenic, and/or anti-androgenic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BH:

Benzhydrole

BP:

Benzophenone

DBH:

2,2-bis(chlorophenyl)benzhydrole

DBP:

2,2-bis(chlorophenyl)benzophenone

DDA:

2,2-bis(chlorophenyl)acetic acid

DDCN:

2,2-bis(4-chlorophenyl)acetonitrile

DDD:

2,2-bis(chlorophenyl)-1,1-dichloroethane

DDE:

2,2-bis(chlorophenyl)-1,1-dichloroethylene

DDEt:

2,2-bis(chlorophenyl)ethane

DDM:

2,2-bis(chlorophenyl)methane

DDMS:

2,2-bis(chlorophenyl)-1-chloroethane

DDMU:

2,2-bis(chlorophenyl)-1-chloroethylene

DDNU:

2,2-bis(chlorophenyl)ethene

DDOH:

2,2-bis(chlorophenyl)-1-ethanol

DDPS:

1,1-bis(4-chlorophenyl)-1-propene)

DDPU:

3,3-bis(4-chlorophenyl)-1-propene)

DDT:

2,2-bis(chlorophenyl)-1,1,1-trichloroethane

DDX:

DDT-related compound

DMSO:

Dimethylsulfoxide

FRG:

Federal Republic of Germany

NOEC:

No observed effect concentration

References

  • ATSDR, Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services (2002) Toxicological profile for DDT, DDE and DDD. http://www.atsdr.cdc.gov/toxprofiles/tp35.pdf

  • Beck I-C, Bruhn R, Gandrass J (2006) Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen. Chemosphere 63:1870–1878

    Article  CAS  Google Scholar 

  • Behrens A, Schirmer K, Bols NC, Segner H (1998) Microassay for rapid measurement of 7-ethoxyresorufin-O-deethylase activity in intact fish hepatocytes. Mar Environ Res 46:369–373

    Article  CAS  Google Scholar 

  • Binelli A, Ricciardi F, Riva C, Provini A (2006) New evidences for old biomarkers: effects of several xenobiotics on EROD and AChE activities in zebra mussel (Dreissena polymorpha). Chemosphere 62:510–519

    Article  CAS  Google Scholar 

  • Binelli A, Riva C, Cogni D, Provini A (2008) Genotoxic effects of p, p′-DDT (1,1,1-trichloro-2,2-bis-(chlorophenyl)ethane) and its metabolites in zebra mussel (D. polymorpha) by SCGE assay and micronucleus test. Environ Mol Mutagen 49:406–415

    Article  CAS  Google Scholar 

  • Bitman J, Cecil HC, Harris SJ, Fries GF (1968) Estrogenic activity of o, p’-DDT in the mammalian uterus and avian oviduct. Science 162:371–372

    Article  CAS  Google Scholar 

  • Borenfreund E, Puerner JA (1984) A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). J Tissue Cult Meth 9:7–9

    Article  Google Scholar 

  • Braunbeck T, Storch V (1992) Senescence of hepatocytes isolated from rainbow trout (Oncorhynchus mykiss) in primary culture—an ultrastructural study. Protoplasma 170:138–159

    Article  Google Scholar 

  • Chen CW, Hurd C, Vorojeikina DP, Arnold SF, Notides AC (1997) Transcriptional activation of the human estrogen receptor by DDT isomers and metabolites in yeast and MCF-7 cells. Biochem Pharmacol 53:1161–1172

    Article  CAS  Google Scholar 

  • Dietz R, Riget F, Cleemann M, Aarkrog A, Johansen P, Hansen JC (2000) Comparison of contaminants from different trophic levels of ecosystems. Sci Total Environ 245:221–231

    Article  CAS  Google Scholar 

  • Donohoe RM, Curtis LR (1996) Estrogenic activity of chlordecone, o, p′-DDT and o, p′-DDE in juvenile rainbow trout: induction of vitellogenesis and interaction with hepatic estrogen binding sites. Aquat Toxicol 36:31–52

    Article  CAS  Google Scholar 

  • Dünnbier U, Heberer T, Reilich C (1997) Occurrence of bis (chlorophenyl)acetic acid (DDA) in surface and ground water in Berlin. Fresen Environ Bull 6:753–759

    Google Scholar 

  • Eganhouse RP, Pontolillo J (2000) Depositional history of organic contaminants on the Palos Verdes Shelf, California. Mar Chem 70:317–338

    Article  CAS  Google Scholar 

  • Eganhouse RP, Pontolillo J (2008) DDE in sediments of the Palos Verdes Shelf, California: in situ transformation rates and geochemical fate. Environ Sci Technol 42:6392–6398

    Article  CAS  Google Scholar 

  • Eganhouse RP, Pontolillo J, Leiker TJ (2000) Diagenetic fate of organic contaminants on the Palos Verdes Shelf, California. Mar Chem 70:289–315

    Article  CAS  Google Scholar 

  • Falandysz J, Strandberg L, Puzyn T, Gucia M, Rappe C (2001) Chlorinated cyclodiene pesticide residues in blue mussel, crab and fish in the Gulf of Gdańsk, Baltic Sea. Environ Sci Technol 35:4163–4169

    Article  CAS  Google Scholar 

  • Falandysz J, Wyrzkowska B, Warzocha J, Barska I, Garbacik-Wesowska SP (2004) Organochlorine pesticides and PCBs in perch Perca fluviatilis from the Odra/Oder river estuary, Baltic Sea. Food Chem 87:17–23

    Article  CAS  Google Scholar 

  • Feng J, Turnbull M (2009) 1,1,1-Trichloro-2,2-bis-(4′-chlorophenyl)-ethane (DDT) anaerobic graphic pathway map. In: Biocatalysis/Biodegradation Database. University of Minnesota. http://umbbd.msi.umn.edu/ddt2/ddt2_image_map.html. Accessed 03 March 2009

  • Franke S, Heinzel N, Specht M, Francke W (2005) Identfication of organic pollutants in waters and sediments from the lower Mulde river area. Acta Hydrochim Hydrobiol 33:519–542

    Article  CAS  Google Scholar 

  • Frische K, Schwarzbauer J, Ricking M (2010) Structural diversity of organochlorine compounds in groundwater affected by an industrial point source. Chemosphere 81:500–508

    Article  CAS  Google Scholar 

  • Fry DM, Toone CK (1981) DDT-induced feminization of gull embryos. Science 213:922–924

    Article  CAS  Google Scholar 

  • Garrison AW, Nzengung VA, Avants JK, Ellington JJ, Jones WJ, Rennels D, Wolfe NL (2000) Phytodegradation of p, p′-DDT and the enantiomers of o, p′-DDT. Environ Sci Technol 34:1663–1670

    Article  CAS  Google Scholar 

  • Gaw SK, Palmer G, Kim ND, Wilkins AL (2003) Preliminary evidence that copper inhibits the degradation of DDT to DDE in pip and stonefruit orchard soils in the Auckland region, New Zealand. Environ Pollut 122:1–5

    Article  CAS  Google Scholar 

  • Guo Y, Zhang BZ, Meng XZ, Yu HY, Ran Y, Li SM, Zeng EY (2009) Occurrence and fate of 1-chloro-2,2-bis(4-chlorophenyl)ethene in the environment of the Pearl river delta, South China. Environ Sci Technol 43:3073–3079

    Article  CAS  Google Scholar 

  • Heberer T, Dünnbier U (1999) DDT metabolite bis(chlorophenyl)acetic acid: the neglected environmental contaminant. Environ Sci Technol 33:2346–2351

    Article  CAS  Google Scholar 

  • Heim S, Ricking M, Schwarzbauer J, Littke R (2005) Halogenated compounds in a dated sediment core of the Teltow Canal, Berlin: time related sediment contamination. Chemosphere 61:1427–1438

    Article  CAS  Google Scholar 

  • Hilscherova K, Machala M, Kannan K, Blankenship AL, Giesy JP (2000) Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Environ Sci Pollut Res 7:159–171

    Article  CAS  Google Scholar 

  • Hollert H, Dürr M, Erdinger L, Braunbeck T (2000) Cytotoxicity of settling particulate matter and sediments of the Neckar River (Germany) during a winter flood. Environ Toxicol Chem 19:528–534

    Article  CAS  Google Scholar 

  • Hollert H, Dürr M, Olsman H, Halldin K, van Bavel B, Brack W, Tysklind M, Engwall M, Braunbeck T (2002) Biological and chemical determination of dioxin-like compounds in sediments by means of a sediment triad approach in the catchment area of the River Neckar. Ecotoxicology 11:323–336

    Article  CAS  Google Scholar 

  • Hollert H, Dürr M, Holtey-Weber R, Islinger M, Brack W, Färber H, Erdinger L, Braunbeck T (2005) Endocrine disruption of water and sediment extracts in a non-radioactive dot blot/RNAse protection-assay using isolated hepatocytes of rainbow trout - deficiencies between bioanalytical effectiveness and chemically determined concentrations and how to explain them. Environ Sci Pollut Res 12:347–360

    Article  CAS  Google Scholar 

  • Islinger M, Pawlowski S, Hollert H, Völkl A, Braunbeck T (1999) Measurement of vitellogenin-mRNA expression in primary cultures of rainbow trout hepatocytes in a non-radioactive RNAse protection assay/RNAse protection-assay. Sci Total Environ 233:109–122

    Article  CAS  Google Scholar 

  • Jafvert CT (1990) Environmental research brief: assessing the environmental partitioning of organic acid compounds. EPA/600/M-89/016

  • Jensen S, Göthe R, Kindstedt MO (1972) Bis-(p-chlorophenyl)-acetonitrile (DDCN), a new DDT derivative formed in anaerobic digested sewage sludge and lake sediment. Nature 240:421–422

    Article  Google Scholar 

  • Jeong HG, Kim JY (2002) Effects of o, p′-DDT on the 2,3,7,8-tetrachlorodibenzo-p-dioxin-inducible CYP1A1 expression in murine Hepa-1c1c7 cells. Food Chem Toxicol 40:1685–1692

    Article  CAS  Google Scholar 

  • Kale SP, Murthy NBK, Raghu K, Sherkhane PD, Carvalho FP (1999) Studies on degradation of 14C-DDT in the marine environment. Chemosphere 39:959–968

    Article  CAS  Google Scholar 

  • Keith LH, Telliard WA (1979) Priority pollutants: I—a perspective view. Environ Sci Technol 13:416–423

    Article  Google Scholar 

  • Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA, Wilson EM (1995) Persistent DDT metabolite p, p′-DDE is a potent androgen receptor antagonist. Nature 375:581–585

    Article  CAS  Google Scholar 

  • Kennedy SW, Lones SP (1994) Simultaneous measurement of cytochrome P4501A catalytic activity and total protein concentration with a fluorescence plate reader. Anal Biochem 222:217–223

    Article  CAS  Google Scholar 

  • Kosmehl T, Krebs F, Manz W, Erdinger L, Braunbeck T, Hollert H (2004) Comparative genotoxicity testing of Rhine river sediment extracts using the comet assay with permanent fish cell lines (RTG-2 and RTL-W1) and the Ames test. JSS - J Soils Sediments 4:84–94

    Article  CAS  Google Scholar 

  • Kronimus A, Schwarzbauer J (2007) Non-target screening of extractable and non-extractable organic xenobiotics in riverine sediments of Ems and Mulde rivers, Germany. Environ Pollut 147:176–186

    Article  CAS  Google Scholar 

  • Kronimus A, Schwarzbauer J, Ricking M (2006) Analysis of non-extractable DDT-related compounds in riverine sediments of the Teltow Canal, Berlin, by pyrolysis and thermochemolysis. Environ Sci Technol 40:5882–5890

    Article  CAS  Google Scholar 

  • Leaños-Castañeda O, van der Kraak G (2007) Functional characterization of estrogen receptor subtypes, ERα and ERβ, mediating vitellogenin production in the liver of rainbow trout. Toxicol Appl Pharm 224:116–125

    Article  Google Scholar 

  • Leaños-Castañeda O, van der Kraak G, Rodríguez-Canul R, Gold G (2007) Endocrine disruption mechanism of o, p′-DDT in mature tilapia (Oreochromis niloticus). Toxicol Appl Pharm 221:158–167

    Article  Google Scholar 

  • Lee LEJ, Clemons JH, Bechtel DG, Caldwell SJ, Han KB, Pasitschniak-Arts M, Mosser DD, Bols NC (1993) Development and characterization of a rainbow trout liver cell line expressing cytochrome P450-dependent monooxygenase activity. Cell Biol Toxicol 9:279–294

    Article  CAS  Google Scholar 

  • Llompart M, Lores M, Lourido M, Sánchez-Prado L, Cela R (2003) On-fiber photodegradation after solid-phase microextraction of p, p′-DDT and two of its major photoproducts, p, p′-DDE and p, p′-DDD. J Chrom A 985:175–183

    Article  CAS  Google Scholar 

  • Lotufo GR, Landrum PF, Gedeon ML, Tigue EA, Herche LR (2000) Comparative toxicity and toxicokinetics of DDT and its major metabolites in freshwater amphipods. Environ Toxicol Chem 19:368–379

    Article  CAS  Google Scholar 

  • Lotufo GR, Landrum PF, Gedeon ML (2001) Toxicity and bioaccumulation of DDT in freshwater amphipods in exposures to spiked sediments. Environ Toxicol Chem 20:810–825

    Article  CAS  Google Scholar 

  • Lubet RA, Dragnev KH, Chauhan DP, Nims RW, Diwan BA, Ward JM, Jones CR, Rice JM, Miller MS (1992) A pleiotropic response to phenobarbital-type enzyme inducers in the F344/NCr rat—effects of chemicals of varied structure. Biochem Pharmacol 43:1067–1078

    Article  CAS  Google Scholar 

  • Megharaj M, Kantachote D, Singleton I, Naidu R (2000) Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ Pollut 109:35–42

    Article  CAS  Google Scholar 

  • Metcalf RL (1973) A century of DDT. J Agr Food Chem 21:511–519

    Article  CAS  Google Scholar 

  • Nims RW, Lubet RA, Fox SD, Jones CR, Thomas PE, Reddy AB, Kocarek TA (1998) Comparative pharmacodynmics of CYP2B induction by DDT, DDE and DDD in male rat liver and cultured rat hepatocytes. J Toxicol Environ Health A 53:455–477

    Article  CAS  Google Scholar 

  • Pawlowski S, Ternes TA, Bonerz M, Rastall AC, Erdinger L, Braunbeck T (2004) Estrogenicity of solid phase-extracted water samples from two municipal sewage treatment plant effluents and river Rhine water using the yeast estrogen screen. Toxicol in Vitro 18:129–138

    Article  CAS  Google Scholar 

  • Petit F, Goff PL, Cravédi JP, Valotaire Y, Pakdel F (1997) Two complementary bioassays for screening the estrogenic potency of xenobiotics: recombinant yeast for trout estrogen receptor and trout hepatocyte cultures. J Mol Endocrinol 19:321–335

    Article  CAS  Google Scholar 

  • Petit F, Goff PL, Cravédi JP, Kah O, Valotaire Y, Pakdel F (1999) Trout oestrogen receptor sensitivity to xenobiotics as tested by different bioassays. Aquaculture 177:353–365

    Article  CAS  Google Scholar 

  • Petrulis JR, Chen G, Benn S, LaMarre J, Bunce NJ (2001) Application of the ethoxyresorufin-O-deethylase (EROD) assay to mixtures of halogenated aromatic compounds. Environ Toxicol 16:177–184

    Article  CAS  Google Scholar 

  • Phuong PK, Son CPN, Sauvain JJ, Tarradellas J (1998) Contamination by PCB′s, DDT’s, and heavy metals in sediments of Ho Chi Minh City’s Canals, Viet Nam. Bull Environ Contam Toxicol 60:347–354

    Article  CAS  Google Scholar 

  • Planche G, Croisy A, Malaveille C, Tomatis L, Bartsch H (1979) Metabolic and mutagenicity studies on DDT and 15 derivatives. Detection of 1,1-bis(p-chlorophenyl)-2,2-dichloroethane and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethyl acetate (kelthane acetate) as mutagens in Salmonella typhimurium and of 1,1-bis(p-chlorophenyl) ethylene oxide, a likely metabolite, as an alkylating agent. Chem-Biol Interactions 25:157–175

    Article  CAS  Google Scholar 

  • Preuss TG, Gehrhardt J, Schirmer K, Coors A, Rubach M, Russ A, Jones PD, Giesy JP, Ratte HT (2006) Nonylphenol isomers differ in estrogenic activity. Environ Sci Technol 40:5147–5153

    Article  CAS  Google Scholar 

  • Preuss TG, Gurer-Orhan H, Meerman J, Ratte HT (2010) Some nonylphenol isomers show antiestrogenic potency in the MVLN cell assay. Toxicol Vitr 24:129–134

    Article  CAS  Google Scholar 

  • Quensen JF, Tiedje JM, Jain MK, Mueller SA (2001) Factors controlling the rate of DDE dechlorination to DDMU in Palos Verdes margin sediments under anaerobic conditions. Environ Sci Technol 35:286–291

    Article  CAS  Google Scholar 

  • Rastall AC, Neziri A, Vukovic Z, Jung C, Mijovic S, Hollert H, Nikcevic S, Erdinger L (2004) The identification of readily bioavailable pollutants in Lake Shkodra/Skadar using semipermeable membrane devices (SPMDs), bioassays and chemical analysis. Environ Sci Pollut Res 11:240–253

    Article  CAS  Google Scholar 

  • Reich AR, Perkins JL, Cutter G (1986) DDT contamination of a north Alabama aquatic ecosystem. Environ Toxicol Chem 5:725–736

    Article  CAS  Google Scholar 

  • Ren L, Lattier D, Lech JJ (1996) Estrogenic activity in rainbow trout determined with a new cDNA probe for vitellogenesis, pSG5Vg1.1. Bull Environ Contam Toxicol 56:287–294

    Article  CAS  Google Scholar 

  • Renner R (1998) ‘Natural’ remediation of DDT, PCBs debated. Environ Sci Technol/News 32:360 A–363 A

    CAS  Google Scholar 

  • Routledge EJ, Sumpter JP (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environ Toxicol Chem 15:241–248

    Article  CAS  Google Scholar 

  • Sayles GD, You G, Wang M, Kupferle MJ (1997) DDT, DDD and DDE dechlorination by zero-valent iron. Environ Sci Technol 31:3448–3454

    Article  CAS  Google Scholar 

  • Schwarzbauer J (1997) Screening, Identifizierung und quantitative Analyse organischer Substanzen in Sediment und Schwebstoff des Elbesystems. PhD Thesis University Hamburg, Department of Chemistry, 1–282

  • Schwarzbauer J, Ricking M, Franke S, Francke W (2001) Halogenated organic contaminants in sediments of the Havel and Spree rivers (Germany). Part 5 of organic compounds as contaminants of the Elbe River and its tributaries. Environ Sci Technol 35:4015–4025

    Article  CAS  Google Scholar 

  • Schwarzbauer J, Ricking M, Littke R (2003) DDT-related compounds bound to the nonextractable particulate matter in sediments of the Teltow Canal, Germany. Environ Sci Technol 37:488–495

    Article  CAS  Google Scholar 

  • Sharpe RM (1995) Another DDT connection. Nature 375:538–539

    Article  CAS  Google Scholar 

  • Smeets JMW, van Holsteijn I, Giesy JP, Seinen W, van den Berg M (1999) Estrogenic potencies of several environmental pollutants, as determined by vitellogenin induction in a carp hepatocyte assay. Toxicol Sci 50:206–213

    Article  CAS  Google Scholar 

  • Sohoni P, Sumpter JP (1998) Several environmental oestrogens are also anti-androgens. J Endocrin 158:327–339

    Article  CAS  Google Scholar 

  • Van Zwieten L, Ayres MR, Morris SG (2003) Influence of arsenic co-contamination on DDT breakdown and microbial activity. Environ Pollut 124:331–339

    Article  Google Scholar 

  • Voldner EC, Li YF (1995) Global usage of selected persistent organochlorines. Sci Total Environ 160(161):201–210

    Google Scholar 

  • Vos JG, Dybing E, Greim HA, Ladefoged O, Lambré C, Tarazona JV, Brandt I, Vethaak AD (2000) Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit Rev Toxicol 30:71–133

    Article  CAS  Google Scholar 

  • Wan Y, Hu J, Liu J, An W, Tao S, Jia Z (2005) Fate of DDT-related compounds in Bohai Bay and its adjacent Haihe Bay, North China. Mar Pollut Bull 50:439–445

    Article  CAS  Google Scholar 

  • West CW, Phipps GL, Hoke RA, Goldenstein TA, van der Meiden FM, Kosian PA, Ankley GT (1994) Sediment core versus grab samples: evaluation of contamination and toxicity at a DDT-contaminated site. Ecotoxicol Environ Safety 28:208–220

    Article  CAS  Google Scholar 

  • Wolf K, Quimby MC (1962) Established eurythermic line of fish cells in vitro. Science 135:1065–1066

    Article  CAS  Google Scholar 

  • Wölz J, Engwall M, Maletz S, Takner HO, van Bavel B, Kammann U, Klempt M, Weber R, Braunbeck T, Hollert H (2008) Changes in toxicity and Ah receptor agonist activity of suspended particulate matter during flood events at the rivers Neckar and Rhine—a mass balance approach using in vitro methods and chemical analysis. Environ Sci Pollut Res 15:536–553

    Article  Google Scholar 

  • Yn X, Guo Y, Xie M, Shen RL, Zeng EY (2009) Detection of DDT and its metabolites in two estuaries of South China using a SPME-based device: first report of p, p′-DDMU in water column. Environ Pollut 157:1382–1387

    Article  Google Scholar 

  • Zahn J, Fahimi HD, Vöelkl A (1997) Sensitive nonradioactive dot blot/ribonuclease protection-assay for quantitative determination of mRNA. Biotechniques 22:500–505

    Google Scholar 

  • Zeng EY, Venkatesan MI (1999) Dispersion of sediment DDTs in the coastal ocean of Southern California. Sci Total Environ 229:195–208

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bernhard Wetterauer, Mathias Ricking or Henner Hollert.

Additional information

Responsible editor: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wetterauer, B., Ricking, M., Otte, J.C. et al. Toxicity, dioxin-like activities, and endocrine effects of DDT metabolites—DDA, DDMU, DDMS, and DDCN. Environ Sci Pollut Res 19, 403–415 (2012). https://doi.org/10.1007/s11356-011-0570-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-011-0570-9

Keywords

Navigation